Empirical Inference


2024


no image
Demonstration: Minsight - A Soft Vision-Based Tactile Sensor for Robotic Fingertips

Andrussow, I., Sun, H., Martius, G., Kuchenbecker, K. J.

Hands-on demonstration presented at the Conference on Robot Learning (CoRL), Munich, Germany, November 2024 (misc) Accepted

Abstract
Beyond vision and hearing, tactile sensing enhances a robot's ability to dexterously manipulate unfamiliar objects and safely interact with humans. Giving touch sensitivity to robots requires compact, robust, affordable, and efficient hardware designs, especially for high-resolution tactile sensing. We present a soft vision-based tactile sensor engineered to meet these requirements. Comparable in size to a human fingertip, Minsight uses machine learning to output high-resolution directional contact force distributions at 60 Hz. Minsight's tactile force maps enable precise sensing of fingertip contacts, which we use in this hands-on demonstration to allow a 3-DoF robot arm to physically track contact with a user's finger. While observing the colorful image captured by Minsight's internal camera, attendees can experience how its ability to detect delicate touches in all directions facilitates real-time robot interaction.

Project Page [BibTex]

2024

Project Page [BibTex]


no image
Use the 4S (Signal-Safe Speckle Subtraction): Explainable Machine Learning reveals the Giant Exoplanet AF Lep b in High-Contrast Imaging Data from 2011

Bonse, M. J., Gebhard, T. D., Dannert, F. A., Absil, O., Cantalloube, F., Christiaens, V., Cugno, G., Garvin, E. O., Hayoz, J., Kasper, M., Matthews, E., Schölkopf, B., Quanz, S. P.

2024 (misc) Submitted

arXiv [BibTex]

arXiv [BibTex]

2023


no image
Borges und die Künstliche Intelligenz

Bottou, L., Schölkopf, B.

2023, published in Frankfurter Allgemeine Zeitung, 18 December 2023, Nr. 294 (misc)

PDF [BibTex]

2023

PDF [BibTex]


no image
Pulling back information geometry

Arvanitidis, G., González Duque, M., Pouplin, A., Kalatzis, D., Hauberg, S.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


A Robot Cluster for Reproducible Research in Dexterous Manipulation
A Robot Cluster for Reproducible Research in Dexterous Manipulation

Wüthrich*, M., Widmaier*, F., Bauer*, S., Funk, N., Urain, J., Peters, J., Watson, J., Chen, C., Srinivasan, K., Zhang, J., Zhang, J., Walter, M. R., Madan, R., Schaff, C., Maeda, T., Yoneda, T., Yarats, D., Allshire, A., Gordon, E. K., Bhattacharjee, T., Srinivasa, S. S., Garg, A., Buchholz, A., Stark, S., Steinbrenner, T., Akpo, J., Joshi, S., Agrawal, V., Schölkopf, B.

2021, *equal contribution (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Nonpar MANOVA via Independence Testing

Panda, S., Shen, C., Perry, R., Zorn, J., Lutz, A., Priebe, C. E., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
On the Impact of Stable Ranks in Deep Nets

Georgiev, B., Franken, L., Mukherjee, M., Arvanitidis, G.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Manifold forests: closing the gap on neural networks

Perry, R., Tomita, T. M., Mehta, R., Arroyo, J., Patsolic, J., Falk, B., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Random Forests for Adaptive Nearest Neighbor Estimation of Information-Theoretic Quantities

Perry, R., Mehta, R., Guo, R., Yezerets, E., Arroyo, J., Powell, M., Helm, H., Shen, C., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger

Allshire, A., Mittal, M., Lodaya, V., Makoviychuk, V., Makoviichuk, D., Widmaier, F., Wüthrich, M., Bauer, S., Handa, A., Garg, A.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Neural Causal Models from Unknown Interventions

Ke, R., Bilaniuk, O., Goyal, A., Bauer, S., Larochelle, H., Schölkopf, B., Mozer, M. C., Pal, C., Bengio, Y.

2020 (misc)

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]

2018


no image
Die kybernetische Revolution

Schölkopf, B.

S{\"u}ddeutsche Zeitung, 2018, (15-Mar-2018) (misc)

link (url) [BibTex]

2018

link (url) [BibTex]


no image
Large sample analysis of the median heuristic

Garreau, D., Jitkrittum, W., Kanagawa, M.

2018 (misc) In preparation

arXiv [BibTex]

2016


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

pdf [BibTex]

2016

pdf [BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

Arxiv [BibTex]

2007


no image
Mathematik der Wahrnehmung: Wendepunkte

Wichman, F., Ernst, MO.

Akademische Mitteilungen zw{\"o}lf: F{\"u}nf Sinne, pages: 32-37, 2007 (misc)

[BibTex]

2007

[BibTex]

2004


no image
Statistische Lerntheorie und Empirische Inferenz

Schölkopf, B.

Jahrbuch der Max-Planck-Gesellschaft, 2004, pages: 377-382, 2004 (misc)

Abstract
Statistical learning theory studies the process of inferring regularities from empirical data. The fundamental problem is what is called generalization: how it is possible to infer a law which will be valid for an infinite number of future observations, given only a finite amount of data? This problem hinges upon fundamental issues of statistics and science in general, such as the problems of complexity of explanations, a priori knowledge, and representation of data.

PDF Web [BibTex]

2004

PDF Web [BibTex]

1998


no image
Übersicht durch Übersehen

Schölkopf, B.

Frankfurter Allgemeine Zeitung , Wissenschaftsbeilage, March 1998 (misc)

[BibTex]

1998

[BibTex]

1997


no image
Das Spiel mit dem künstlichen Leben.

Schölkopf, B.

Frankfurter Allgemeine Zeitung, Wissenschaftsbeilage, June 1997 (misc)

[BibTex]

1997

[BibTex]