Statistische Lerntheorie und Empirische Inferenz
2004
Miscellaneous
ei
Statistical learning theory studies the process of inferring regularities from empirical data. The fundamental problem is what is called generalization: how it is possible to infer a law which will be valid for an infinite number of future observations, given only a finite amount of data? This problem hinges upon fundamental issues of statistics and science in general, such as the problems of complexity of explanations, a priori knowledge, and representation of data.
Author(s): | Schölkopf, B. |
Journal: | Jahrbuch der Max-Planck-Gesellschaft |
Volume: | 2004 |
Pages: | 377-382 |
Year: | 2004 |
Day: | 0 |
Department(s): | Empirical Inference |
Bibtex Type: | Miscellaneous (misc) |
Digital: | 0 |
Language: | de |
Organization: | Max-Planck-Gesellschaft |
School: | Biologische Kybernetik |
Links: |
PDF
Web |
BibTex @misc{2811, title = {Statistische Lerntheorie und Empirische Inferenz}, author = {Sch{\"o}lkopf, B.}, journal = {Jahrbuch der Max-Planck-Gesellschaft}, volume = {2004}, pages = {377-382}, organization = {Max-Planck-Gesellschaft}, school = {Biologische Kybernetik}, year = {2004}, doi = {} } |