Empirical Inference


2024


no image
Demonstration: Minsight - A Soft Vision-Based Tactile Sensor for Robotic Fingertips

Andrussow, I., Sun, H., Martius, G., Kuchenbecker, K. J.

Hands-on demonstration presented at the Conference on Robot Learning (CoRL), Munich, Germany, November 2024 (misc) Accepted

Abstract
Beyond vision and hearing, tactile sensing enhances a robot's ability to dexterously manipulate unfamiliar objects and safely interact with humans. Giving touch sensitivity to robots requires compact, robust, affordable, and efficient hardware designs, especially for high-resolution tactile sensing. We present a soft vision-based tactile sensor engineered to meet these requirements. Comparable in size to a human fingertip, Minsight uses machine learning to output high-resolution directional contact force distributions at 60 Hz. Minsight's tactile force maps enable precise sensing of fingertip contacts, which we use in this hands-on demonstration to allow a 3-DoF robot arm to physically track contact with a user's finger. While observing the colorful image captured by Minsight's internal camera, attendees can experience how its ability to detect delicate touches in all directions facilitates real-time robot interaction.

Project Page [BibTex]

2024

Project Page [BibTex]


no image
Language Models Can Reduce Asymmetry in Information Markets

Rahaman, N., Weiss, M., Wüthrich, M., Bengio, Y., Li, E., Pal, C., Schölkopf, B.

arXiv:2403.14443, March 2024, Published as: Redesigning Information Markets in the Era of Language Models, Conference on Language Modeling (COLM) (techreport)

Abstract
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

link (url) [BibTex]

link (url) [BibTex]


no image
Use the 4S (Signal-Safe Speckle Subtraction): Explainable Machine Learning reveals the Giant Exoplanet AF Lep b in High-Contrast Imaging Data from 2011

Bonse, M. J., Gebhard, T. D., Dannert, F. A., Absil, O., Cantalloube, F., Christiaens, V., Cugno, G., Garvin, E. O., Hayoz, J., Kasper, M., Matthews, E., Schölkopf, B., Quanz, S. P.

2024 (misc) Submitted

arXiv [BibTex]

arXiv [BibTex]

2023


Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80
Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80

Berenz, V., Widmaier, F., Guist, S., Schölkopf, B., Büchler, D.

Robot Software Architectures Workshop (RSA) 2023, ICRA, 2023 (techreport)

Abstract
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most of the required features, flexible synchronization between algorithms, data streams and control loops can be tedious. o80 is a versatile C++ framework for robotics which provides a shared memory model and a command framework for real-time critical systems. It enables expert users to set up complex robotic systems and generate Python bindings for scientists. o80's unique feature is its flexible synchronization between processes, including the traditional blocking commands and the novel ``bursting mode'', which allows user code to control the execution of the lower process control loop. This makes it particularly useful for setups that mix real and simulated environments.

arxiv poster link (url) [BibTex]


no image
Borges und die Künstliche Intelligenz

Bottou, L., Schölkopf, B.

2023, published in Frankfurter Allgemeine Zeitung, 18 December 2023, Nr. 294 (misc)

PDF [BibTex]

PDF [BibTex]

2022


no image
Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)

Biester, L., Demszky, D., Jin, Z., Sachan, M., Tetreault, J., Wilson, S., Xiao, L., Zhao, J.

Association for Computational Linguistics, December 2022 (proceedings)

link (url) [BibTex]

2022

link (url) [BibTex]


no image
Proceedings of the First Conference on Causal Learning and Reasoning (CLeaR 2022)

Schölkopf, B., Uhler, C., Zhang, K.

177, Proceedings of Machine Learning Research, PMLR, April 2022 (proceedings)

link (url) [BibTex]

link (url) [BibTex]

2021


no image
Proceedings of the 1st Workshop on NLP for Positive Impact

Field, A., Prabhumoye, S., Sap, M., Jin, Z., Zhao, J., Brockett, C.

Association for Computational Linguistics, August 2021 (proceedings)

link (url) [BibTex]

2021

link (url) [BibTex]


no image
Pulling back information geometry

Arvanitidis, G., González Duque, M., Pouplin, A., Kalatzis, D., Hauberg, S.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


A Robot Cluster for Reproducible Research in Dexterous Manipulation
A Robot Cluster for Reproducible Research in Dexterous Manipulation

Wüthrich*, M., Widmaier*, F., Bauer*, S., Funk, N., Urain, J., Peters, J., Watson, J., Chen, C., Srinivasan, K., Zhang, J., Zhang, J., Walter, M. R., Madan, R., Schaff, C., Maeda, T., Yoneda, T., Yarats, D., Allshire, A., Gordon, E. K., Bhattacharjee, T., Srinivasa, S. S., Garg, A., Buchholz, A., Stark, S., Steinbrenner, T., Akpo, J., Joshi, S., Agrawal, V., Schölkopf, B.

2021, *equal contribution (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Nonpar MANOVA via Independence Testing

Panda, S., Shen, C., Perry, R., Zorn, J., Lutz, A., Priebe, C. E., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
On the Impact of Stable Ranks in Deep Nets

Georgiev, B., Franken, L., Mukherjee, M., Arvanitidis, G.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Manifold forests: closing the gap on neural networks

Perry, R., Tomita, T. M., Mehta, R., Arroyo, J., Patsolic, J., Falk, B., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Random Forests for Adaptive Nearest Neighbor Estimation of Information-Theoretic Quantities

Perry, R., Mehta, R., Guo, R., Yezerets, E., Arroyo, J., Powell, M., Helm, H., Shen, C., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger

Allshire, A., Mittal, M., Lodaya, V., Makoviychuk, V., Makoviichuk, D., Widmaier, F., Wüthrich, M., Bauer, S., Handa, A., Garg, A.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Neural Causal Models from Unknown Interventions

Ke, R., Bilaniuk, O., Goyal, A., Bauer, S., Larochelle, H., Schölkopf, B., Mozer, M. C., Pal, C., Bengio, Y.

2020 (misc)

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]

2018


no image
Die kybernetische Revolution

Schölkopf, B.

S{\"u}ddeutsche Zeitung, 2018, (15-Mar-2018) (misc)

link (url) [BibTex]

2018

link (url) [BibTex]


no image
Large sample analysis of the median heuristic

Garreau, D., Jitkrittum, W., Kanagawa, M.

2018 (misc) In preparation

arXiv [BibTex]

2016


no image
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI)

Ihler, A. T., Janzing, D.

pages: 869 pages, AUAI Press, June 2016 (proceedings)

link (url) [BibTex]

2016


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

pdf [BibTex]

pdf [BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

Arxiv [BibTex]

2015


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

link (url) [BibTex]

2015

link (url) [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

link (url) [BibTex]

link (url) [BibTex]

2014


no image
Development of advanced methods for improving astronomical images

Schmeißer, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (diplomathesis)

[BibTex]

2014

[BibTex]

2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

PDF [BibTex]

2013

PDF [BibTex]


no image
Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24

Deisenroth, M., Szepesvári, C., Peters, J.

pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)

Web [BibTex]

Web [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.

arXiv:1309.0653, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]