Empirical Inference


2024


no image
Demonstration: Minsight - A Soft Vision-Based Tactile Sensor for Robotic Fingertips

Andrussow, I., Sun, H., Martius, G., Kuchenbecker, K. J.

Hands-on demonstration presented at the Conference on Robot Learning (CoRL), Munich, Germany, November 2024 (misc) Accepted

Abstract
Beyond vision and hearing, tactile sensing enhances a robot's ability to dexterously manipulate unfamiliar objects and safely interact with humans. Giving touch sensitivity to robots requires compact, robust, affordable, and efficient hardware designs, especially for high-resolution tactile sensing. We present a soft vision-based tactile sensor engineered to meet these requirements. Comparable in size to a human fingertip, Minsight uses machine learning to output high-resolution directional contact force distributions at 60 Hz. Minsight's tactile force maps enable precise sensing of fingertip contacts, which we use in this hands-on demonstration to allow a 3-DoF robot arm to physically track contact with a user's finger. While observing the colorful image captured by Minsight's internal camera, attendees can experience how its ability to detect delicate touches in all directions facilitates real-time robot interaction.

Project Page [BibTex]

2024

Project Page [BibTex]


no image
Language Models Can Reduce Asymmetry in Information Markets

Rahaman, N., Weiss, M., Wüthrich, M., Bengio, Y., Li, E., Pal, C., Schölkopf, B.

arXiv:2403.14443, March 2024, Published as: Redesigning Information Markets in the Era of Language Models, Conference on Language Modeling (COLM) (techreport)

Abstract
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

link (url) [BibTex]

link (url) [BibTex]


no image
Koopman Spectral Analysis Uncovers the Temporal Structure of Spontaneous Neural Events

Shao, K., Xu, Y., Logothetis, N., Shen, Z., Besserve, M.

Computational and Systems Neuroscience Meeting (COSYNE), March 2024 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
Use the 4S (Signal-Safe Speckle Subtraction): Explainable Machine Learning reveals the Giant Exoplanet AF Lep b in High-Contrast Imaging Data from 2011

Bonse, M. J., Gebhard, T. D., Dannert, F. A., Absil, O., Cantalloube, F., Christiaens, V., Cugno, G., Garvin, E. O., Hayoz, J., Kasper, M., Matthews, E., Schölkopf, B., Quanz, S. P.

2024 (misc) Submitted

arXiv [BibTex]

arXiv [BibTex]

2023


no image
Natural Language Processing for Policymaking

Jin, Z., Mihalcea, R.

In Handbook of Computational Social Science for Policy, pages: 141-162, 7, (Editors: Bertoni, E. and Fontana, M. and Gabrielli, L. and Signorelli, S. and Vespe, M.), Springer International Publishing, 2023 (inbook)

DOI [BibTex]

2023

DOI [BibTex]


Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80
Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80

Berenz, V., Widmaier, F., Guist, S., Schölkopf, B., Büchler, D.

Robot Software Architectures Workshop (RSA) 2023, ICRA, 2023 (techreport)

Abstract
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most of the required features, flexible synchronization between algorithms, data streams and control loops can be tedious. o80 is a versatile C++ framework for robotics which provides a shared memory model and a command framework for real-time critical systems. It enables expert users to set up complex robotic systems and generate Python bindings for scientists. o80's unique feature is its flexible synchronization between processes, including the traditional blocking commands and the novel ``bursting mode'', which allows user code to control the execution of the lower process control loop. This makes it particularly useful for setups that mix real and simulated environments.

arxiv poster link (url) [BibTex]


no image
Borges und die Künstliche Intelligenz

Bottou, L., Schölkopf, B.

2023, published in Frankfurter Allgemeine Zeitung, 18 December 2023, Nr. 294 (misc)

PDF [BibTex]

PDF [BibTex]

2022


no image
Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)

Biester, L., Demszky, D., Jin, Z., Sachan, M., Tetreault, J., Wilson, S., Xiao, L., Zhao, J.

Association for Computational Linguistics, December 2022 (proceedings)

link (url) [BibTex]

2022

link (url) [BibTex]


no image
Proceedings of the First Conference on Causal Learning and Reasoning (CLeaR 2022)

Schölkopf, B., Uhler, C., Zhang, K.

177, Proceedings of Machine Learning Research, PMLR, April 2022 (proceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Causal Models for Dynamical Systems

Peters, J., Bauer, S., Pfister, N.

In Probabilistic and Causal Inference: The Works of Judea Pearl, pages: 671-690, 1, Association for Computing Machinery, 2022 (inbook)

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Towards Causal Algorithmic Recourse

Karimi, A. H., von Kügelgen, J., Schölkopf, B., Valera, I.

In xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pages: 139-166, (Editors: Holzinger, Andreas and Goebel, Randy and Fong, Ruth and Moon, Taesup and Müller, Klaus-Robert and Samek, Wojciech), Springer International Publishing, 2022 (inbook)

DOI [BibTex]

DOI [BibTex]


no image
CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations

Salewski, L., Koepke, A. S., Lensch, H. P. A., Akata, Z.

In xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pages: 69-88, (Editors: Holzinger, Andreas and Goebel, Randy and Fong, Ruth and Moon, Taesup and Müller, Klaus-Robert and Samek, Wojciech), Springer International Publishing, 2022 (inbook)

DOI [BibTex]

DOI [BibTex]


no image
Causality for Machine Learning

Schölkopf, B.

In Probabilistic and Causal Inference: The Works of Judea Pearl, pages: 765-804, 1, Association for Computing Machinery, New York, NY, USA, 2022 (inbook)

arXiv DOI [BibTex]

arXiv DOI [BibTex]

2021


no image
Proceedings of the 1st Workshop on NLP for Positive Impact

Field, A., Prabhumoye, S., Sap, M., Jin, Z., Zhao, J., Brockett, C.

Association for Computational Linguistics, August 2021 (proceedings)

link (url) [BibTex]

2021

link (url) [BibTex]


no image
Pulling back information geometry

Arvanitidis, G., González Duque, M., Pouplin, A., Kalatzis, D., Hauberg, S.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


A Robot Cluster for Reproducible Research in Dexterous Manipulation
A Robot Cluster for Reproducible Research in Dexterous Manipulation

Wüthrich*, M., Widmaier*, F., Bauer*, S., Funk, N., Urain, J., Peters, J., Watson, J., Chen, C., Srinivasan, K., Zhang, J., Zhang, J., Walter, M. R., Madan, R., Schaff, C., Maeda, T., Yoneda, T., Yarats, D., Allshire, A., Gordon, E. K., Bhattacharjee, T., Srinivasa, S. S., Garg, A., Buchholz, A., Stark, S., Steinbrenner, T., Akpo, J., Joshi, S., Agrawal, V., Schölkopf, B.

2021, *equal contribution (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Nonpar MANOVA via Independence Testing

Panda, S., Shen, C., Perry, R., Zorn, J., Lutz, A., Priebe, C. E., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
On the Impact of Stable Ranks in Deep Nets

Georgiev, B., Franken, L., Mukherjee, M., Arvanitidis, G.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


Scientific Report 2016 - 2021
Scientific Report 2016 - 2021
2021 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January2016 to November 2021. It is our fourth report since the founding of the institute in 2011. Dueto the fact that the upcoming evaluation is an extended one, the report covers a longer reportingperiod.This scientific report is organized as follows: we begin with an overview of the institute, includingan outline of its structure, an introduction of our latest research departments, and a presentationof our main collaborative initiatives and activities (Chapter1). The central part of the scientificreport consists of chapters on the research conducted by the institute’s departments (Chapters2to6) and its independent research groups (Chapters7 to24), as well as the work of the institute’scentral scientific facilities (Chapter25). For entities founded after January 2016, the respectivereport sections cover work done from the date of the establishment of the department, group, orfacility. These chapters are followed by a summary of selected outreach activities and scientificevents hosted by the institute (Chapter26). The scientific publications of the featured departmentsand research groups published during the 6-year review period complete this scientific report.

Scientific Report 2016 - 2021 [BibTex]


no image
Manifold forests: closing the gap on neural networks

Perry, R., Tomita, T. M., Mehta, R., Arroyo, J., Patsolic, J., Falk, B., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Random Forests for Adaptive Nearest Neighbor Estimation of Information-Theoretic Quantities

Perry, R., Mehta, R., Guo, R., Yezerets, E., Arroyo, J., Powell, M., Helm, H., Shen, C., Vogelstein, J. T.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger

Allshire, A., Mittal, M., Lodaya, V., Makoviychuk, V., Makoviichuk, D., Widmaier, F., Wüthrich, M., Bauer, S., Handa, A., Garg, A.

2021 (misc)

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Neural Causal Models from Unknown Interventions

Ke, R., Bilaniuk, O., Goyal, A., Bauer, S., Larochelle, H., Schölkopf, B., Mozer, M. C., Pal, C., Bengio, Y.

2020 (misc)

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]

2019


no image
Perception of temporal dependencies in autoregressive motion

Meding, K., Schölkopf, B., Wichmann, F. A.

Perception, 48(2-suppl):141, 42nd European Conference on Visual Perception (ECVP), August 2019 (poster)

link (url) [BibTex]

2019

link (url) [BibTex]


no image
Phenomenal Causality and Sensory Realism

Bruijns, S. A., Meding, K., Schölkopf, B., Wichmann, F. A.

Perception, 48(2-suppl):141, 42nd European Conference on Visual Perception (ECVP), August 2019 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
Neural mass modeling of the Ponto-Geniculo-Occipital wave and its neuromodulation

Shao, K., Logothetis, N., Besserve, M.

28th Annual Computational Neuroscience Meeting (CNS*2019), July 2019 (poster)

DOI [BibTex]

DOI [BibTex]


Scientific Report 2016 - 2018
Scientific Report 2016 - 2018
2019 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January 2016 to December 2018. It is our third report since the founding of the institute in 2011. This status report is organized as follows: we begin with an overview of the institute, including its organizational structure (Chapter 1). The central part of the scientific report consists of chapters on the research conducted by the institute’s departments (Chapters 2 to 5) and its independent research groups (Chapters 6 to 18), as well as the work of the institute’s central scientific facilities (Chapter 19). For entities founded after January 2016, the respective report sections cover work done from the date of the establishment of the department, group, or facility.

Scientific Report 2016 - 2018 [BibTex]

2018


no image
Representation of sensory uncertainty in macaque visual cortex

Goris, R., Henaff, O., Meding, K.

Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)

[BibTex]

2018

[BibTex]


no image
Die kybernetische Revolution

Schölkopf, B.

S{\"u}ddeutsche Zeitung, 2018, (15-Mar-2018) (misc)

link (url) [BibTex]

link (url) [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
Maschinelles Lernen: Entwicklung ohne Grenzen?

Schölkopf, B.

In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

[BibTex]

[BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

[BibTex]

[BibTex]


no image
Photorealistic Video Super Resolution

Pérez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (poster)

[BibTex]

[BibTex]


no image
Retinal image quality of the human eye across the visual field

Meding, K., Hirsch, M., Wichmann, F. A.

14th Biannual Conference of the German Society for Cognitive Science (KOGWIS 2018), 2018 (poster)

[BibTex]

[BibTex]