Empirical Inference


2024


no image
Language Models Can Reduce Asymmetry in Information Markets

Rahaman, N., Weiss, M., Wüthrich, M., Bengio, Y., Li, E., Pal, C., Schölkopf, B.

arXiv:2403.14443, March 2024, Published as: Redesigning Information Markets in the Era of Language Models, Conference on Language Modeling (COLM) (techreport)

Abstract
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

link (url) [BibTex]

2024

link (url) [BibTex]

2023


Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80
Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80

Berenz, V., Widmaier, F., Guist, S., Schölkopf, B., Büchler, D.

Robot Software Architectures Workshop (RSA) 2023, ICRA, 2023 (techreport)

Abstract
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most of the required features, flexible synchronization between algorithms, data streams and control loops can be tedious. o80 is a versatile C++ framework for robotics which provides a shared memory model and a command framework for real-time critical systems. It enables expert users to set up complex robotic systems and generate Python bindings for scientists. o80's unique feature is its flexible synchronization between processes, including the traditional blocking commands and the novel ``bursting mode'', which allows user code to control the execution of the lower process control loop. This makes it particularly useful for setups that mix real and simulated environments.

arxiv poster link (url) [BibTex]

2015


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

link (url) [BibTex]

2015

link (url) [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

link (url) [BibTex]

link (url) [BibTex]

2013


no image
Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

PDF [BibTex]

2013

PDF [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.

arXiv:1309.0653, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

Montet, B. T., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Hogg, D. W., Lang, D., Schiminovich, D., Schölkopf, B.

arXiv:1309.0654, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]

2012


no image
High Gamma-Power Predicts Performance in Brain-Computer Interfacing

Grosse-Wentrup, M., Schölkopf, B.

(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)

Abstract
Subjects operating a brain-computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency gamma-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this nding as empirical support for an in uence of attentional networks on BCI-performance via modulation of the sensorimotor rhythm.

PDF [BibTex]

2012

PDF [BibTex]

2011


no image
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)

Abstract
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered.

PDF Web [BibTex]

2011

PDF Web [BibTex]


no image
Non-stationary Correction of Optical Aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

PDF [BibTex]

PDF [BibTex]


no image
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

Nickisch, H., Seeger, M.

Max Planck Institute for Biological Cybernetics, March 2011 (techreport)

Abstract
We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm.

Web [BibTex]

Web [BibTex]


no image
Multiple testing, uncertainty and realistic pictures

Langovoy, M., Wittich, O.

(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

Abstract
We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on nite lattices.

PDF [BibTex]

PDF [BibTex]


no image
Nonconvex proximal splitting: batch and incremental algorithms

Sra, S.

(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

Abstract
Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-based batch and incremental (online like) nonconvex proximal splitting algorithms. To our knowledge, this is the rst time that such perturbation-based nonconvex splitting algorithms are being proposed and analyzed. While the main contribution of the paper is the theoretical framework, we complement our results by presenting some empirical results on matrix factorization.

PDF [BibTex]

PDF [BibTex]

2010


no image
Computationally efficient algorithms for statistical image processing: Implementation in R

Langovoy, M., Wittich, O.

(2010-053), EURANDOM, Technische Universiteit Eindhoven, December 2010 (techreport)

Abstract
In the series of our earlier papers on the subject, we proposed a novel statistical hy- pothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We developed algorithms that allowed to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of un- known distribution. No boundary shape constraints were imposed on the objects, only a weak bulk condition for the object's interior was required. Our algorithms have linear complexity and exponential accuracy. In the present paper, we describe an implementation of our nonparametric hypothesis testing method. We provide a program that can be used for statistical experiments in image processing. This program is written in the statistical programming language R.

PDF [BibTex]

2010

PDF [BibTex]


no image
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, December 2010 (techreport)

Abstract
We propose a novel algorithm to solve the expectation propagation relaxation of Bayesian inference for continuous-variable graphical models. In contrast to most previous algorithms, our method is provably convergent. By marrying convergent EP ideas from (Opper&Winther 05) with covariance decoupling techniques (Wipf&Nagarajan 08, Nickisch&Seeger 09), it runs at least an order of magnitude faster than the most commonly used EP solver.

Web [BibTex]

Web [BibTex]


no image
A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering

Seldin, Y.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)

Abstract
We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generalization bound for graph clustering. The bound shows that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate way to deal with finite sample issues. We derive a bound minimization algorithm and show that it provides good results in real-life problems and that the derived PAC-Bayesian bound is reasonably tight.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Sparse nonnegative matrix approximation: new formulations and algorithms

Tandon, R., Sra, S.

(193), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)

Abstract
We introduce several new formulations for sparse nonnegative matrix approximation. Subsequently, we solve these formulations by developing generic algorithms. Further, to help selecting a particular sparse formulation, we briefly discuss the interpretation of each formulation. Finally, preliminary experiments are presented to illustrate the behavior of our formulations and algorithms.

PDF [BibTex]

PDF [BibTex]


no image
Robust nonparametric detection of objects in noisy images

Langovoy, M., Wittich, O.

(2010-049), EURANDOM, Technische Universiteit Eindhoven, September 2010 (techreport)

Abstract
We propose a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of unknown distribution. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. In this paper, we develop further the mathematical formalism of our method and explore im- portant connections to the mathematical theory of percolation and statistical physics. We prove results on consistency and algorithmic complexity of our testing procedure. In addition, we address not only an asymptotic behavior of the method, but also a nite sample performance of our test.

PDF [BibTex]

PDF [BibTex]


no image
Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, August 2010 (techreport)

Abstract
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed by querying the SLM posterior covariance, unrelated to the density's mode. We propose a scalable algorithmic framework, with which SLM posteriors over full, high-resolution images can be approximated for the first time, solving a variational optimization problem which is convex iff posterior mode finding is convex. These methods successfully drive the optimization of sampling trajectories for real-world magnetic resonance imaging through Bayesian experimental design, which has not been attempted before. Our methodology provides new insight into similarities and differences between sparse reconstruction and approximate Bayesian inference, and has important implications for compressive sensing of real-world images.

Web [BibTex]


no image
Cooperative Cuts for Image Segmentation

Jegelka, S., Bilmes, J.

(UWEETR-1020-0003), University of Washington, Washington DC, USA, August 2010 (techreport)

Abstract
We propose a novel framework for graph-based cooperative regularization that uses submodular costs on graph edges. We introduce an efficient iterative algorithm to solve the resulting hard discrete optimization problem, and show that it has a guaranteed approximation factor. The edge-submodular formulation is amenable to the same extensions as standard graph cut approaches, and applicable to a range of problems. We apply this method to the image segmentation problem. Specifically, Here, we apply it to introduce a discount for homogeneous boundaries in binary image segmentation on very difficult images, precisely, long thin objects and color and grayscale images with a shading gradient. The experiments show that significant portions of previously truncated objects are now preserved.

Web [BibTex]

Web [BibTex]


no image
Fast algorithms for total-variationbased optimization

Barbero, A., Sra, S.

(194), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2010 (techreport)

Abstract
We derive a number of methods to solve efficiently simple optimization problems subject to a totalvariation (TV) regularization, under different norms of the TV operator and both for the case of 1-dimensional and 2-dimensional data. In spite of the non-smooth, non-separable nature of the TV terms considered, we show that a dual formulation with strong structure can be derived. Taking advantage of this structure we develop adaptions of existing algorithms from the optimization literature, resulting in efficient methods for the problem at hand. Experimental results show that for 1-dimensional data the proposed methods achieve convergence within good accuracy levels in practically linear time, both for L1 and L2 norms. For the more challenging 2-dimensional case a performance of order O(N2 log2 N) for N x N inputs is achieved when using the L2 norm. A final section suggests possible extensions and lines of further work.

PDF [BibTex]

PDF [BibTex]


no image
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models

Nickisch, H., Rasmussen, C.

Max Planck Institute for Biological Cybernetics, June 2010 (techreport)

Abstract
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets.

Web [BibTex]

Web [BibTex]


no image
Generalized Proximity and Projection with Norms and Mixed-norms

Sra, S.

(192), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2010 (techreport)

Abstract
We discuss generalized proximity operators (GPO) and their associated generalized projection problems. On inputs of size n, we show how to efficiently apply GPOs and generalized projections for separable norms and distance-like functions to accuracy e in O(n log(1/e)) time. We also derive projection algorithms that run theoretically in O(n log n log(1/e)) time but can for suitable parameter ranges empirically outperform the O(n log(1/e)) projection method. The proximity and projection tasks are either separable, and solved directly, or are reduced to a single root-finding step. We highlight that as a byproduct, our analysis also yields an O(n log(1/e)) (weakly linear-time) procedure for Euclidean projections onto the l1;1-norm ball; previously only an O(n log n) method was known. We provide empirical evaluation to illustrate the performance of our methods, noting that for the l1;1-norm projection, our implementation is more than two orders of magnitude faster than the previously known method.

PDF [BibTex]

PDF [BibTex]


no image
Cooperative Cuts: Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

(189), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, March 2010 (techreport)

Abstract
We introduce a problem we call Cooperative cut, where the goal is to find a minimum-cost graph cut but where a submodular function is used to define the cost of a subsets of edges. That means, the cost of an edge that is added to the current cut set C depends on the edges in C. This generalization of the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of Omega(|V|^(1/3)) on the approximation factor for the problem. On the positive side, we propose and compare four approximation algorithms with an overall approximation factor of min { |V|/2, |C*|, O( sqrt(|E|) log |V|), |P_max|}, where C* is the optimal solution, and P_max is the longest s, t path across the cut between given s, t. We also introduce additional heuristics for the problem which have attractive properties from the perspective of practical applications and implementations in that existing fast min-cut libraries may be used as subroutines. Both our approximation algorithms, and our heuristics, appear to do well in practice.

PDF [BibTex]

PDF [BibTex]


no image
Information-theoretic inference of common ancestors

Steudel, B., Ay, N.

Computing Research Repository (CoRR), abs/1010.5720, pages: 18, 2010 (techreport)

Web [BibTex]

Web [BibTex]

2009


no image
Learning an Interactive Segmentation System

Nickisch, H., Kohli, P., Rother, C.

Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

Web [BibTex]

2009

Web [BibTex]


no image
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
We develop an incremental generalized expectation maximization (GEM) framework to model the multiframe blind deconvolution problem. A simplistic version of this problem was recently studied by Harmeling etal~cite{harmeling09}. We solve a more realistic version of this problem which includes the following major features: (i) super-resolution ability emph{despite} noise and unknown blurring; (ii) saturation-correction, i.e., handling of overexposed pixels that can otherwise confound the image processing; and (iii) simultaneous handling of color channels. These features are seamlessly integrated into our incremental GEM framework to yield simple but efficient multiframe blind deconvolution algorithms. We present technical details concerning critical steps of our algorithms, especially to highlight how all operations can be written using matrix-vector multiplications. We apply our algorithm to real-world images from astronomy and super resolution tasks. Our experimental results show that our methods yield improve d resolution and deconvolution at the same time.

PDF [BibTex]

PDF [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

PDF [BibTex]

PDF [BibTex]


no image
Consistent Nonparametric Tests of Independence

Gretton, A., Györfi, L.

(172), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2009 (techreport)

Abstract
Three simple and explicit procedures for testing the independence of two multi-dimensional random variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when the empirical distribution of the variables is restricted to finite partitions. A third test statistic is defined as a kernel-based independence measure. Two kinds of tests are provided. Distribution-free strong consistent tests are derived on the basis of large deviation bounds on the test statistcs: these tests make almost surely no Type I or Type II error after a random sample size. Asymptotically alpha-level tests are obtained from the limiting distribution of the test statistics. For the latter tests, the Type I error converges to a fixed non-zero value alpha, and the Type II error drops to zero, for increasing sample size. All tests reject the null hypothesis of independence if the test statistics become large. The performance of the tests is evaluated experimentally on benchmark data.

PDF [BibTex]

PDF [BibTex]


no image
Semi-supervised subspace analysis of human functional magnetic resonance imaging data

Shelton, J., Blaschko, M., Bartels, A.

(185), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2009 (techreport)

Abstract
Kernel Canonical Correlation Analysis is a very general technique for subspace learning that incorporates PCA and LDA as special cases. Functional magnetic resonance imaging (fMRI) acquired data is naturally amenable to these techniques as data are well aligned. fMRI data of the human brain is a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single- and multi-variate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of KCCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.

PDF [BibTex]

PDF [BibTex]

2008


no image
Frequent Subgraph Retrieval in Geometric Graph Databases

Nowozin, S., Tsuda, K.

(180), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric epsilon-subgraphs under the entire class of rigid geometric transformations in a database. By using geometric epsilon-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is larger than for non-geometric graph mining, the total time is within a reasonable level even for small minimum support.

PDF [BibTex]

2008

PDF [BibTex]


no image
Simultaneous Implicit Surface Reconstruction and Meshing

Giesen, J., Maier, M., Schölkopf, B.

(179), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
We investigate an implicit method to compute a piecewise linear representation of a surface from a set of sample points. As implicit surface functions we use the weighted sum of piecewise linear kernel functions. For such a function we can partition Rd in such a way that these functions are linear on the subsets of the partition. For each subset in the partition we can then compute the zero level set of the function exactly as the intersection of a hyperplane with the subset.

PDF [BibTex]

PDF [BibTex]


no image
Taxonomy Inference Using Kernel Dependence Measures

Blaschko, M., Gretton, A.

(181), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
We introduce a family of unsupervised algorithms, numerical taxonomy clustering, to simultaneously cluster data, and to learn a taxonomy that encodes the relationship between the clusters. The algorithms work by maximizing the dependence between the taxonomy and the original data. The resulting taxonomy is a more informative visualization of complex data than simple clustering; in addition, taking into account the relations between different clusters is shown to substantially improve the quality of the clustering, when compared with state-of-the-art algorithms in the literature (both spectral clustering and a previous dependence maximization approach). We demonstrate our algorithm on image and text data.

PDF [BibTex]

PDF [BibTex]


no image
Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models

Seeger, M., Nickisch, H.

(175), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2008 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Block-Iterative Algorithms for Non-Negative Matrix Approximation

Sra, S.

(176), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2008 (techreport)

Abstract
In this report we present new algorithms for non-negative matrix approximation (NMA), commonly known as the NMF problem. Our methods improve upon the well-known methods of Lee & Seung [19] for both the Frobenius norm as well the Kullback-Leibler divergence versions of the problem. For the latter problem, our results are especially interesting because it seems to have witnessed much lesser algorithmic progress as compared to the Frobenius norm NMA problem. Our algorithms are based on a particular block-iterative acceleration technique for EM, which preserves the multiplicative nature of the updates and also ensures monotonicity. Furthermore, our algorithms also naturally apply to the Bregman-divergence NMA algorithms of Dhillon and Sra [8]. Experimentally, we show that our algorithms outperform the traditional Lee/Seung approach most of the time.

PDF [BibTex]

PDF [BibTex]


no image
Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering

Sra, S., Jegelka, S., Banerjee, A.

(177), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2008 (techreport)

Abstract
The Euclidean K-means problem is fundamental to clustering and over the years it has been intensely investigated. More recently, generalizations such as Bregman k-means [8], co-clustering [10], and tensor (multi-way) clustering [40] have also gained prominence. A well-known computational difficulty encountered by these clustering problems is the NP-Hardness of the associated optimization task, and commonly used methods guarantee at most local optimality. Consequently, approximation algorithms of varying degrees of sophistication have been developed, though largely for the basic Euclidean K-means (or `1-norm K-median) problem. In this paper we present approximation algorithms for several Bregman clustering problems by building upon the recent paper of Arthur and Vassilvitskii [5]. Our algorithms obtain objective values within a factor O(logK) for Bregman k-means, Bregman co-clustering, Bregman tensor clustering, and weighted kernel k-means. To our knowledge, except for some special cases, approximation algorithms have not been considered for these general clustering problems. There are several important implications of our work: (i) under the same assumptions as Ackermann et al. [1] it yields a much faster algorithm (non-exponential in K, unlike [1]) for information-theoretic clustering, (ii) it answers several open problems posed by [4], including generalizations to Bregman co-clustering, and tensor clustering, (iii) it provides practical and easy to implement methods—in contrast to several other common approximation approaches.

PDF [BibTex]

PDF [BibTex]


no image
Combining Appearance and Motion for Human Action Classification in Videos

Dhillon, P., Nowozin, S., Lampert, C.

(174), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, August 2008 (techreport)

Abstract
We study the question of activity classification in videos and present a novel approach for recognizing human action categories in videos by combining information from appearance and motion of human body parts. Our approach uses a tracking step which involves Particle Filtering and a local non - parametric clustering step. The motion information is provided by the trajectory of the cluster modes of a local set of particles. The statistical information about the particles of that cluster over a number of frames provides the appearance information. Later we use a “Bag ofWords” model to build one histogram per video sequence from the set of these robust appearance and motion descriptors. These histograms provide us characteristic information which helps us to discriminate among various human actions and thus classify them correctly. We tested our approach on the standard KTH and Weizmann human action datasets and the results were comparable to the state of the art. Additionally our approach is able to distinguish between activities that involve the motion of complete body from those in which only certain body parts move. In other words, our method discriminates well between activities with “gross motion” like running, jogging etc. and “local motion” like waving, boxing etc.

PDF [BibTex]

PDF [BibTex]


no image
Example-based Learning for Single-image Super-resolution and JPEG Artifact Removal

Kim, K., Kwon, Y.

(173), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, August 2008 (techreport)

Abstract
This paper proposes a framework for single-image super-resolution and JPEG artifact removal. The underlying idea is to learn a map from input low-quality images (suitably preprocessed low-resolution or JPEG encoded images) to target high-quality images based on example pairs of input and output images. To retain the complexity of the resulting learning problem at a moderate level, a patch-based approach is taken such that kernel ridge regression (KRR) scans the input image with a small window (patch) and produces a patchvalued output for each output pixel location. These constitute a set of candidate images each of which reflects different local information. An image output is then obtained as a convex combination of candidates for each pixel based on estimated confidences of candidates. To reduce the time complexity of training and testing for KRR, a sparse solution is found by combining the ideas of kernel matching pursuit and gradient descent. As a regularized solution, KRR leads to a better generalization than simply storing the examples as it has been done in existing example-based super-resolution algorithms and results in much less noisy images. However, this may introduce blurring and ringing artifacts around major edges as sharp changes are penalized severely. A prior model of a generic image class which takes into account the discontinuity property of images is adopted to resolve this problem. Comparison with existing super-resolution and JPEG artifact removal methods shows the effectiveness of the proposed method. Furthermore, the proposed method is generic in that it has the potential to be applied to many other image enhancement applications.

PDF [BibTex]

PDF [BibTex]


no image
Unsupervised Bayesian Time-series Segmentation based on Linear Gaussian State-space Models

Chiappa, S.

(171), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, June 2008 (techreport)

Abstract
Unsupervised time-series segmentation in the general scenario in which the number of segment-types and segment boundaries are a priori unknown is a fundamental problem in many applications and requires an accurate segmentation model as well as a way of determining an appropriate number of segment-types. In most approaches, segmentation and determination of number of segment-types are addressed in two separate steps, since the segmentation model assumes a predefined number of segment-types. The determination of number of segment-types is thus achieved by training and comparing several separate models. In this paper, we take a Bayesian approach to a segmentation model based on linear Gaussian state-space models to achieve structure selection within the model. An appropriate prior distribution on the parameters is used to enforce a sparse parametrization, such that the model automatically selects the smallest number of underlying dynamical systems that explain the data well and a parsimonious structure for each dynamical system. As the resulting model is computationally intractable, we introduce a variational approximation, in which a reformulation of the problem enables to use an efficient inference algorithm.

[BibTex]

[BibTex]


no image
A New Non-monotonic Gradient Projection Method for the Non-negative Least Squares Problem

Kim, D., Sra, S., Dhillon, I.

(TR-08-28), University of Texas, Austin, TX, USA, June 2008 (techreport)

Web [BibTex]

Web [BibTex]


no image
Non-monotonic Poisson Likelihood Maximization

Sra, S., Kim, D., Schölkopf, B.

(170), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2008 (techreport)

Abstract
This report summarizes the theory and some main applications of a new non-monotonic algorithm for maximizing a Poisson Likelihood, which for Positron Emission Tomography (PET) is equivalent to minimizing the associated Kullback-Leibler Divergence, and for Transmission Tomography is similar to maximizing the dual of a maximum entropy problem. We call our method non-monotonic maximum likelihood (NMML) and show its application to different problems such as tomography and image restoration. We discuss some theoretical properties such as convergence for our algorithm. Our experimental results indicate that speedups obtained via our non-monotonic methods are substantial.

PDF [BibTex]

PDF [BibTex]


no image
A Kernel Method for the Two-sample Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

(157), Max-Planck-Institute for Biological Cybernetics Tübingen, April 2008 (techreport)

Abstract
We propose a framework for analyzing and comparing distributions, allowing us to design statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS). We present two tests based on large deviation bounds for the test statistic, while a third is based on the asymptotic distribution of this statistic. The test statistic can be computed in quadratic time, although efficient linear time approximations are available. Several classical metrics on distributions are recovered when the function space used to compute the difference in expectations is allowed to be more general (eg.~a Banach space). We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.

PDF [BibTex]

PDF [BibTex]


no image
Energy Functionals for Manifold-valued Mappings and Their Properties

Hein, M., Steinke, F., Schölkopf, B.

(167), Max Planck Institute for Biological Cybernetics, Tübingen, January 2008 (techreport)

Abstract
This technical report is merely an extended version of the appendix of Steinke et.al. "Manifold-valued Thin-Plate Splines with Applications in Computer Graphics" (2008) with complete proofs, which had to be omitted due to space restrictions. This technical report requires a basic knowledge of differential geometry. However, apart from that requirement the technical report is self-contained.

PDF [BibTex]

PDF [BibTex]

2007


no image
Learning with Transformation Invariant Kernels

Walder, C., Chapelle, O.

(165), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2007 (techreport)

Abstract
Abstract. This paper considers kernels invariant to translation, rotation and dilation. We show that no non-trivial positive definite (p.d.) kernels exist which are radial and dilation invariant, only conditionally positive definite (c.p.d.) ones. Accordingly, we discuss the c.p.d. case and provide some novel analysis, including an elementary derivation of a c.p.d. representer theorem. On the practical side, we give a support vector machine (s.v.m.) algorithm for arbitrary c.p.d. kernels. For the thin-plate kernel this leads to a classifier with only one parameter (the amount of regularisation), which we demonstrate to be as effective as an s.v.m. with the Gaussian kernel, even though the Gaussian involves a second parameter (the length scale).

PDF [BibTex]

2007

PDF [BibTex]


no image
Scalable Semidefinite Programming using Convex Perturbations

Kulis, B., Sra, S., Jegelka, S.

(TR-07-47), University of Texas, Austin, TX, USA, September 2007 (techreport)

Abstract
Several important machine learning problems can be modeled and solved via semidefinite programs. Often, researchers invoke off-the-shelf software for the associated optimization, which can be inappropriate for many applications due to computational and storage requirements. In this paper, we introduce the use of convex perturbations for semidefinite programs (SDPs). Using a particular perturbation function, we arrive at an algorithm for SDPs that has several advantages over existing techniques: a) it is simple, requiring only a few lines of MATLAB, b) it is a first-order method which makes it scalable, c) it can easily exploit the structure of a particular SDP to gain efficiency (e.g., when the constraint matrices are low-rank). We demonstrate on several machine learning applications that the proposed algorithm is effective in finding fast approximations to large-scale SDPs.

PDF [BibTex]

PDF [BibTex]


no image
Sparse Multiscale Gaussian Process Regression

Walder, C., Kim, K., Schölkopf, B.

(162), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Most existing sparse Gaussian process (g.p.) models seek computational advantages by basing their computations on a set of m basis functions that are the covariance function of the g.p. with one of its two inputs fixed. We generalise this for the case of Gaussian covariance function, by basing our computations on m Gaussian basis functions with arbitrary diagonal covariance matrices (or length scales). For a fixed number of basis functions and any given criteria, this additional flexibility permits approximations no worse and typically better than was previously possible. Although we focus on g.p. regression, the central idea is applicable to all kernel based algorithms, such as the support vector machine. We perform gradient based optimisation of the marginal likelihood, which costs O(m2n) time where n is the number of data points, and compare the method to various other sparse g.p. methods. Our approach outperforms the other methods, particularly for the case of very few basis functions, i.e. a very high sparsity ratio.

PDF [BibTex]

PDF [BibTex]


no image
Efficient Subwindow Search for Object Localization

Blaschko, M., Hofmann, T., Lampert, C.

(164), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)

Abstract
Recent years have seen huge advances in object recognition from images. Recognition rates beyond 95% are the rule rather than the exception on many datasets. However, most state-of-the-art methods can only decide if an object is present or not. They are not able to provide information on the object location or extent within in the image. We report on a simple yet powerful scheme that extends many existing recognition methods to also perform localization of object bounding boxes. This is achieved by maximizing the classification score over all possible subrectangles in the image. Despite the impression that this would be computationally intractable, we show that in many situations efficient algorithms exist which solve a generalized maximum subrectangle problem. We show how our method is applicable to a variety object detection frameworks and demonstrate its performance by applying it to the popular bag of visual words model, achieving competitive results on the PASCAL VOC 2006 dataset.

PDF [BibTex]

PDF [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

(163), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, May 2007 (techreport)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

PDF [BibTex]

PDF [BibTex]


no image
Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach

Chiappa, S., Barber, D.

(161), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, March 2007 (techreport)

Abstract
We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based on Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models in order to (semi) automatically determine an appropriate number of components in the mixture, and to additionally bias the components to a parsimonious parameterization. The resulting models are formally intractable and to deal with this we describe a deterministic approximation based on a novel implementation of Variational Bayes.

PDF [BibTex]

PDF [BibTex]


no image
Automatic 3D Face Reconstruction from Single Images or Video

Breuer, P., Kim, K., Kienzle, W., Blanz, V., Schölkopf, B.

(160), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2007 (techreport)

Abstract
This paper presents a fully automated algorithm for reconstructing a textured 3D model of a face from a single photograph or a raw video stream. The algorithm is based on a combination of Support Vector Machines (SVMs) and a Morphable Model of 3D faces. After SVM face detection, individual facial features are detected using a novel regression-and classification-based approach, and probabilistically plausible configurations of features are selected to produce a list of candidates for several facial feature positions. In the next step, the configurations of feature points are evaluated using a novel criterion that is based on a Morphable Model and a combination of linear projections. Finally, the feature points initialize a model-fitting procedure of the Morphable Model. The result is a high-resolution 3D surface model.

PDF [BibTex]

PDF [BibTex]