Empirical Inference

Semi-supervised subspace analysis of human functional magnetic resonance imaging data

2009

Technical Report

ei


Kernel Canonical Correlation Analysis is a very general technique for subspace learning that incorporates PCA and LDA as special cases. Functional magnetic resonance imaging (fMRI) acquired data is naturally amenable to these techniques as data are well aligned. fMRI data of the human brain is a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single- and multi-variate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of KCCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.

Author(s): Shelton, J. and Blaschko, M. and Bartels, A.
Number (issue): 185
Year: 2009
Month: May
Day: 0

Department(s): Empirical Inference
Bibtex Type: Technical Report (techreport)

Institution: Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Digital: 0
Language: en
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: PDF

BibTex

@techreport{5901,
  title = {Semi-supervised subspace analysis of human functional magnetic resonance imaging data},
  author = {Shelton, J. and Blaschko, M. and Bartels, A.},
  number = {185},
  organization = {Max-Planck-Gesellschaft},
  institution = {Max Planck Institute for Biological Cybernetics, Tübingen, Germany},
  school = {Biologische Kybernetik},
  month = may,
  year = {2009},
  doi = {},
  month_numeric = {5}
}