2021
Belousov, B., H., A., Klink, P., Parisi, S., Peters, J.
Reinforcement Learning Algorithms: Analysis and Applications
883, Studies in Computational Intelligence, Springer International Publishing, 2021 (book)
2017
Peters, J., Janzing, D., Schölkopf, B.
Elements of Causal Inference - Foundations and Learning Algorithms
Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)
2014
Kober, J., Peters, J.
Learning Motor Skills: From Algorithms to Robot Experiments
97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)
Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O’Donnell, L., Panagiotaki, E.
Computational Diffusion MRI and Brain Connectivity
pages: 255, Mathematics and Visualization, Springer, 2014 (book)
2013
Schölkopf, B., Luo, Z., Vovk, V.
Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik
Springer, 2013 (book)
2011
Sra, S., Nowozin, S., Wright, S.
Optimization for Machine Learning
pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)
Barber, D., Cemgil, A., Chiappa, S.
Bayesian Time Series Models
pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)
Lu, H., Schölkopf, B., Zhao, H.
Handbook of Statistical Bioinformatics
pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)
2010
Sigaud, O., Peters, J.
From Motor Learning to Interaction Learning in Robots
pages: 538, Studies in Computational Intelligence ; 264, (Editors: O Sigaud, J Peters), Springer, Berlin, Germany, January 2010 (book)
2008
Peters, J.
Machine Learning for Robotics: Learning Methods for Robot Motor Skills
pages: 107 , (Editors: J Peters), VDM-Verlag, Saarbrücken, Germany, May 2008 (book)
2007
Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan, S.
Predicting Structured Data
pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)
Bottou, L., Chapelle, O., DeCoste, D., Weston, J.
Large-Scale Kernel Machines
pages: 416, Neural Information Processing Series, MIT Press, Cambridge, MA, USA, September 2007 (book)
2006
Chapelle, O., Schölkopf, B., Zien, A.
Semi-Supervised Learning
pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)
Rasmussen, CE., Williams, CKI.
Gaussian Processes for Machine Learning
pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)
2004
Schölkopf, B., Tsuda, K., Vert, J.
Kernel Methods in Computational Biology
pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)
2002
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
2000
Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.
Advances in Large Margin Classifiers
pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)
1999
Schölkopf, B., Burges, C., Smola, A.
Advances in Kernel Methods - Support Vector Learning
MIT Press, Cambridge, MA, 1999 (book)
1997
Schölkopf, B.
Support vector learning
pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)