Neural networks discovering quantum error correction strategies (IS Colloquium)
- Florian Marquardt (Director)
- Max Planck Institute for the Science of Light, Erlangen
- More information
Machine learning with artificial neural networks is revolutionizing science. The most advanced challenges require discovering answers autonomously. In the domain of reinforcement learning, control strategies are improved according to a reward function. The power of neural-network-based reinforcement learning has been highlighted by spectacular recent successes such as playing Go, but its benefits for physics are yet to be demonstrated. Here, we show how a network-based "agent" can discover complete quantum-error-correction strategies, protecting a collection of qubits against noise. These strategies require feedback adapted to measurement outcomes. Finding them from scratch without human guidance and tailored to different hardware resources is a formidable challenge due to the combinatorially large search space. To solve this challenge, we develop two ideas: two-stage learning with teacher and student networks and a reward quantifying the capability to recover the quantum information stored in a multiqubit system. Beyond its immediate impact on quantum computation, our work more generally demonstrates the promise of neural-network-based reinforcement learning in physics.
References: Reinforcement Learning with Neural Networks for Quantum Feedback Thomas Fösel, Petru Tighineanu, Talitha Weiss, Florian Marquardt Physical Review X 8(3) (2018)
Biography: Florian Marquart is a theoretical physicist working at the intersection between nanophysics and quantum optics, and especially in the new field of cavity optomechanics. Cavity optomechanics deals with the interaction between light and mechanical motion. Since August 2016, he is the director at the Max Planck Institute for the Science of Light in Erlangen, Germany. He also holds a part-time position at the University of Erlangen.
Details
- 28 January 2019 • 11:15 - 12:15
- MPI IS building, Max Planck Ring 4, N0.002 (main seminar room)
- Empirical Inference