Empirical Inference


2024


no image
Advances in Probabilistic Methods for Deep Learning

Immer, A.

ETH Zurich, Switzerland, September 2024, CLS PhD Program (phdthesis)

[BibTex]

2024

[BibTex]


no image
A Measure-Theoretic Axiomatisation of Causality and Kernel Regression

Park, J.

University of Tübingen, Germany, July 2024 (phdthesis)

[BibTex]

[BibTex]


no image
Advancing Normalising Flows to Model Boltzmann Distributions

Stimper, V.

University of Cambridge, UK, Cambridge, June 2024, (Cambridge-Tübingen-Fellowship-Program) (phdthesis)

[BibTex]

[BibTex]


no image
Language Models Can Reduce Asymmetry in Information Markets

Rahaman, N., Weiss, M., Wüthrich, M., Bengio, Y., Li, E., Pal, C., Schölkopf, B.

arXiv:2403.14443, March 2024, Published as: Redesigning Information Markets in the Era of Language Models, Conference on Language Modeling (COLM) (techreport)

Abstract
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

link (url) [BibTex]

link (url) [BibTex]


no image
Identifiable Causal Representation Learning

von Kügelgen, J.

University of Cambridge, UK, Cambridge, February 2024, (Cambridge-Tübingen-Fellowship) (phdthesis)

[BibTex]

[BibTex]

2023


no image
Denoising Representation Learning for Causal Discovery

Sakenyte, U.

Université de Genèva, Switzerland, December 2023, external supervision (mastersthesis)

[BibTex]

2023

[BibTex]


no image
Efficient Sampling from Differentiable Matrix Elements

Kofler, A.

Technical University of Munich, Germany, September 2023 (mastersthesis)

[BibTex]

[BibTex]


no image
Learning and Testing Powerful Hypotheses

Kübler, J. M.

University of Tübingen, Germany, July 2023 (phdthesis)

[BibTex]

[BibTex]


no image
Learning Identifiable Representations: Independent Influences and Multiple Views

Gresele, L.

University of Tübingen, Germany, June 2023 (phdthesis)

[BibTex]


no image
Learning with and for discrete optimization

Paulus, M.

ETH Zurich, Switzerland, May 2023, CLS PhD Program (phdthesis)

[BibTex]

[BibTex]


no image
Intrinsic complexity and mechanisms of expressivity of cortical neurons

Spieler, A. M.

University of Tübingen, Germany, March 2023 (mastersthesis)

[BibTex]

[BibTex]


no image
CausalEffect Estimation by Combining Observational and Interventional Data

Kladny, K.

ETH Zurich, Switzerland, February 2023 (mastersthesis)

[BibTex]


no image
Towards Generative Machine Teaching

Qui, Z.

Technical University of Munich, Germany, February 2023 (mastersthesis)

[BibTex]

[BibTex]


no image
ArchiSound: Audio Generation with Diffusion

Schneider, F.

ETH Zurich, Switzerland, January 2023, external supervision (mastersthesis)

[BibTex]

[BibTex]


no image
Generation and Quantification of Spin in Robot Table Tennis

Dittrich, A.

University of Stuttgart, Germany, January 2023 (mastersthesis)

[BibTex]

[BibTex]


Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80
Synchronizing Machine Learning Algorithms, Realtime Robotic Control and Simulated Environment with o80

Berenz, V., Widmaier, F., Guist, S., Schölkopf, B., Büchler, D.

Robot Software Architectures Workshop (RSA) 2023, ICRA, 2023 (techreport)

Abstract
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most of the required features, flexible synchronization between algorithms, data streams and control loops can be tedious. o80 is a versatile C++ framework for robotics which provides a shared memory model and a command framework for real-time critical systems. It enables expert users to set up complex robotic systems and generate Python bindings for scientists. o80's unique feature is its flexible synchronization between processes, including the traditional blocking commands and the novel ``bursting mode'', which allows user code to control the execution of the lower process control loop. This makes it particularly useful for setups that mix real and simulated environments.

arxiv poster link (url) [BibTex]

2022


no image
Towards learning mechanistic models at the right level of abstraction

Neitz, A.

University of Tübingen, Germany, November 2022 (phdthesis)

[BibTex]

2022

[BibTex]


no image
Learning Causal Representations for Generalization and Adaptation in Supervised, Imitation, and Reinforcement Learning

Lu, C.

University of Cambridge, UK, Cambridge, October 2022, (Cambridge-Tübingen-Fellowship) (phdthesis)

[BibTex]

[BibTex]


no image
Investigating Independent Mechanisms in Neural Networks

Liang, W.

Université Paris-Saclay, France, October 2022 (mastersthesis)

[BibTex]

[BibTex]


no image
Learning Time-Continuous Dynamics Models with Gaussian-Process-Based Gradient Matching

Wenk, P.

ETH Zurich, Switzerland, October 2022, CLS PhD Program (phdthesis)

[BibTex]

[BibTex]


no image
Causality, causal digital twins, and their applications

Schölkopf, B.

Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382), (Editors: Berens, Philipp and Cranmer, Kyle and Lawrence, Neil D. and von Luxburg, Ulrike and Montgomery, Jessica), September 2022 (talk)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Multi-Target Multi-Object Manipulation using Relational Deep Reinforcement Learning

Feil, M.

Technnical University Munich, Germany, September 2022 (mastersthesis)

[BibTex]

[BibTex]


no image
Independent Mechanism Analysis for High Dimensions

Sliwa, J.

University of Tübingen, Germany, September 2022, (Graduate Training Centre of Neuroscience) (mastersthesis)

[BibTex]

[BibTex]


no image
Methods for Minimizing the Spread of Misinformation on the Web

Tabibian, B.

University of Tübingen, Germany, September 2022 (phdthesis)

[BibTex]

[BibTex]


no image
On the Adversarial Robustness of Causal Algorithmic Recourse

Dominguez-Olmedo, R.

University of Tübingen, Germany, August 2022 (mastersthesis)

[BibTex]

[BibTex]


no image
Learning and Using Causal Knowledge: A Further Step Towards a Higher-Level Intelligence

Huang, B.

Carnegie Mellon University, Pittsburgh, USA, July 2022 (phdthesis)

[BibTex]

[BibTex]


no image
Learning and Using Causal Knowledge: A Further Step Towards a Higher-Level Intelligence

Huang, B.

Carnegie Mellon University, July 2022, external supervision (phdthesis)

[BibTex]

[BibTex]


no image
Independent Mechanism Analysis in High-Dimensional Observation Spaces

Ghosh, S.

ETH Zurich, Switzerland, June 2022 (mastersthesis)

[BibTex]


no image
Variational Inference in Dynamical Systems

Ialongo, A.

University of Cambridge, UK, Cambridge, February 2022, (Cambridge-Tübingen-Fellowship) (phdthesis)

[BibTex]

[BibTex]

2021


no image
Learning Neural Causal Models with Active Interventions

Scherrer, N.

ETH Zurich, Switzerland, November 2021 (mastersthesis)

[BibTex]

2021

[BibTex]


no image
Study of the Interventional Consistency of Autoencoders

Lanzillotta, G.

ETH Zurich, Switzerland, October 2021 (mastersthesis)

[BibTex]

[BibTex]


no image
Dynamics of Learning and Learning of Dynamics

Mehrjou, A.

ETH Zürich, Zürich, October 2021 (phdthesis)

DOI [BibTex]

DOI [BibTex]


no image
A Large Scale Brain-Computer Interface for Patients with Neurological Diseases

Hohmann, M.

University of Tübingen, Germany, September 2021 (phdthesis)

[BibTex]

[BibTex]


no image
Deep Learning Beyond The Training Distribution

Parascandolo, G.

ETH Zürich, Switzerland, Zürich, September 2021, (CLS Fellowship Program) (phdthesis)

DOI [BibTex]

DOI [BibTex]


no image
Optimization Algorithms for Machine Learning

Raj, A.

University of Tübingen, Germany, June 2021 (phdthesis)

[BibTex]

[BibTex]


no image
Causal Inference in Vision

Meding, K.

Eberhard Karls Universität Tübingen, Tübingen, June 2021 (phdthesis)

[BibTex]

[BibTex]


no image
Machine Learning Methods for Modeling Synthesizable Molecules

Bradshaw, J.

University of Cambridge, UK, Cambridge, April 2021, (Cambridge-Tübingen-Fellowship) (phdthesis)

DOI [BibTex]

DOI [BibTex]


no image
Reinforcement Learning Algorithms: Analysis and Applications

Belousov, B., H., A., Klink, P., Parisi, S., Peters, J.

883, Studies in Computational Intelligence, Springer International Publishing, 2021 (book)

DOI [BibTex]

DOI [BibTex]


Scientific Report 2016 - 2021
Scientific Report 2016 - 2021
2021 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January2016 to November 2021. It is our fourth report since the founding of the institute in 2011. Dueto the fact that the upcoming evaluation is an extended one, the report covers a longer reportingperiod.This scientific report is organized as follows: we begin with an overview of the institute, includingan outline of its structure, an introduction of our latest research departments, and a presentationof our main collaborative initiatives and activities (Chapter1). The central part of the scientificreport consists of chapters on the research conducted by the institute’s departments (Chapters2to6) and its independent research groups (Chapters7 to24), as well as the work of the institute’scentral scientific facilities (Chapter25). For entities founded after January 2016, the respectivereport sections cover work done from the date of the establishment of the department, group, orfacility. These chapters are followed by a summary of selected outreach activities and scientificevents hosted by the institute (Chapter26). The scientific publications of the featured departmentsand research groups published during the 6-year review period complete this scientific report.

Scientific Report 2016 - 2021 [BibTex]

2020


no image
Causal Feature Selection in Neuroscience

Mastakouri, A.

University of Tübingen, Germany, December 2020 (phdthesis)

link (url) [BibTex]

2020

link (url) [BibTex]


no image
Enforcing and Discovering Structure in Machine Learning

Locatello, F.

ETH Zurich, Switzerland, November 2020, (CLS Fellowship Program) (phdthesis)

[BibTex]

[BibTex]


no image
A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning

Ahmed, O.

ETH Zurich, Switzerland, October 2020 (mastersthesis)

[BibTex]

[BibTex]


no image
On the Geometry of Data Representations

Bécigneul, G.

ETH Zurich, Switzerland, September 2020, (CLS Fellowship Program) (phdthesis)

[BibTex]

[BibTex]