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Abstract Action recognition and pose estimation are
two closely related topics in understanding human body
movements; information from one task can be leveraged

to assist the other, yet the two are often treated sepa-
rately. We present here a framework for coupled action
recognition and pose estimation by formulating pose es-

timation as an optimization over a set of action-specific
manifolds. The framework allows for integration of a 2D
appearance-based action recognition system as a prior

for 3D pose estimation and for refinement of the action
labels using relational pose features based on the ex-
tracted 3D poses. Our experiments show that our pose

estimation system is able to estimate body poses with
high degrees of freedom using very few particles and
can achieve state-of-the-art results on the HumanEva-II

benchmark. We also thoroughly investigate the impact
of pose estimation and action recognition accuracy on
each other on the challenging TUM kitchen dataset. We

demonstrate not only the feasibility of using extracted
3D poses for action recognition, but also improved per-
formance in comparison to action recognition using low-

level appearance features.
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1 Introduction

Vision-based human motion analysis attempts to un-
derstand the movements of the human body using com-

puter vision and machine learning techniques. The move-
ments of the body can be interpreted on a physical
level through pose estimation, i.e. reconstruction of the

3D articulated motions, or on a higher, semantic level
through action recognition, i.e. understanding the body’s
movements over time. While the objectives of the two

tasks differ, they share a significant information over-
lap. For instance, poses from a given action tend to be a
constrained subset of all possible configurations within

the space of physiologically possible poses. Therefore,
many state-of-the-art pose estimation systems use action-
specific priors to simplify the pose estimation problem,

e.g. [31,45,75,43,15]. At the same time, pose informa-
tion can be a very strong indicator of actions and ac-
tion labels can be determined from as little as a single

frame [65,78,87,49]. However, as neither pose estima-
tion nor action recognition are trivial tasks, few systems
have tried to couple the two tasks together into a single

system. On the one hand, priors from many state-of-
the-art pose estimation systems are of a single activity,
thereby assuming that the activity is already known,

and cannot handle sequences of multiple activities [75].
On the other hand, action recognition approaches ei-
ther model poses implicitly through pose-related de-

scriptors [78,38,54,87] or completely bypass the diffi-
culties of pose estimation and directly classify actions
with abstract and low-level appearance features [20,21,

36,40,65,85].

Given that human pose estimation and action recog-
nition are such closely intertwined tasks, information
from one task can be leveraged to assist the other and

vice versa. Therefore, we advocate in this paper the
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Fig. 1 Overview of the coupled action recognition and pose estimation framework. The framework begins with 2D appearance-
based action recognition based on low-level appearance features(a) such as colour, optical flow and spatio-temporal gradients.
Outputs of the 2D action recognition(b) are used as a prior distribution(c) for the particle-based optimization for 3D pose
estimation(d) (Arrow 1). Finally, 3D pose-based action recognition(g) is then performed based on pose-based features(f)
extracted from the estimated poses(e) (Arrow 2).

use of information from action recognition to help with
pose estimation and vice versa for the following reasons.
First, using the results of an action classifier is a simple

way to bring together many single-activity priors for
pose estimation in multi-activity sequences. Secondly,
pose-based action recognition has several advantages.

For example, pose representations suffer little of the
intra-class variances common in appearance-based sys-
tems; in particular, 3D skeleton poses are viewpoint and

appearance invariant, such that actions vary less from
actor to actor. Furthermore, using pose-based represen-
tations greatly simplifies learning for the action recog-

nition itself, since the relevant high-level information
has already been extracted.

We introduce a framework which builds upon the
results of action recognition to help with human pose
estimation, the results of which are then used to refine

the action label, as illustrated in Figure 1. Our frame-
work begins with 2D appearance-based action recogni-
tion using low-level appearance features such as colour,

optical flow and spatio-temporal gradients. The out-
puts of the 2D action recognition are used as a prior
distribution for the particle-based optimization for 3D

pose estimation (Arrow 1 in Figure 1). Finally, we per-
form 3D pose-based action recognition using pose-based
features extracted from the estimated poses (Arrow 2

in Figure 1). While we acknowledge the difficulties of
both action and pose estimation as individual tasks, we
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show that perfect results from either are not necessary

to have an impact. In summary, the contributions of
the framework are twofold:

1. Action recognition helps pose estimation.
We propose a new algorithm that integrates the re-

sults of a 2D action recognition system as a prior dis-
tribution for optimization. Low-dimensional man-
ifolds are often used to simplify 3D pose estima-

tion, but the complexity of the embeddings increases
with the number of actions. Separate, action-specific
manifolds seem to be more practical; here, we adapt

a particle-based annealing optimization scheme [26]
to jointly optimize over the action-specific manifolds
and the human poses embedded in each of the man-

ifolds. The approach scales in the worst case linearly
with the number of manifolds but can be made much
more efficient with an action prior.

2. Robust pose-based action recognition.
We demonstrate the robustness of using relational

pose features [53] for pose-based action recognition.
Because semantically similar motions which can be
grouped into a single action are not necessarily nu-

merically similar [39,53], previous works [78,38,54,
87] have encoded pose implicitly. As such, we also do
not directly compare 3D skeleton joints in space and

time. Instead, we use relational pose features, which
describe geometric relations between specific joints
in a single pose or a short sequence of poses. Rela-

tional pose features, introduced in [53], have been
used previously for indexing and retrieval of mo-
tion capture data. Here, we modify a subset of them
for action recognition and show that with these fea-

tures, it is not necessary to have perfect poses to
perform action recognition.

Preliminary versions of this paper appeared in [29],

which described how 2D action recognition could be
used as a prior for improving pose estimation and in [88],
which classified actions based on poses. The current pa-
per couples the two into a single framework and con-

tains an extensive experimental section investigating
the impact of pose estimation accuracy on action recog-
nition and as well as the impact of differently sized

training data.

2 Related Works

As action recognition and 3D pose estimation are both

very active fields of research, there exists a large body
of literature on both topics. We refer the reader to the
excellent reviews [57,2] on action recognition and [51,

23,71] on human pose estimation and tracking for a

more complete overview. We focus our discussion here

on a comparison of appearance- versus pose-based ac-
tion recognition and pose estimation with priors.

2.1 Action Recognition

Early works in recognising human actions relied on re-

covering articulated poses from frame to frame and then
linking together either the poses or pose-derived fea-
tures into sequences. Pose information was obtained

from motion capture systems [14] or segmentation [86,
58]. The sequences themselves were then classified ei-
ther through exemplar matching [30,86,58] or with state-

space models such as HMMs [14].
An alternative line of work models the entire body

as a single entity, using silhouettes or visual hulls [11,48,

84,83,9]. These works are sometimes called pose-based
approaches, in reference to the extracted silhouettes of
the human body; however, we consider silhouettes to

be a specialised appearance feature, since it offers little
interpretation of the individual body parts, and cate-
gorise these works as appearance-based approaches.

To avoid articulated tracking or segmentation, re-
cent works have shifted towards the use of local, low-
level appearance features such as Gabor filter responses

[36,65] and optical flow [21]. Lately, spatio-temporal in-
terest points have become especially popular, e.g. cuboids
[20], 3D Harris corners [40,67] and 3D Hessians [85].

Most of these are extensions of their 2D counterparts
used in object detection and their usage follows a tra-
ditional object detection approach. After interest point

detection at multiple scales, feature descriptors are com-
puted, clustered, and assigned to a code-book to be used
in some bag-of-words representation [41,20,47]. These

approaches have shown great success in natural and
unconstrained videos, such as feature films [41], broad-
cast sports [61] and YouTube [47]. The use of low-level

appearance features requires little to no high-level pre-
processing and is clearly more advantageous in scenar-
ios in which pose estimation is extremely difficult (e.g.

monocular views) or even impossible (e.g. very low res-
olutions [21]).

Despite their success, low-level appearance-based fea-

tures offer little intuition with regards to the actor per-
forming the action, much less the various poses that
constitute the action itself. In many action recognition

applications in which the scenario is slightly more con-
strained, it is not only helpful but natural to infer ac-
tivity from the actor and his pose. In an attempt to

bring back the “human” to human action recognition,
works such as [78,38,54,87] have tried to couple person
detectors with the action recognition task and focus on

features which are related to the human pose. However,
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the pose is never solved for explicitly and is instead han-

dled implicitly by the various models and/or classifiers.

2.2 Pose Estimation

One of the most popular ways to reduce the complex-

ity of the human pose estimation problem is to use
a prior model learned from motion capture databases.
The most basic approaches rely on database matching,

where the previously estimated poses in the sequence
are used as a query to search the most similar motion
exemplar in a database. Approaches can be either on-
line, to predict the pose for the next frame [70,63], or

offline, to refine the tracked poses [5].

Since exemplar-based models do not generalise well,
several methods have been proposed to model priors in

low-dimensional spaces. Among the simplest are those
based on PCA [6,69,81]. More complex priors include
those generated from dimensionality reduction techniques

such as Isomap [76] (see [29]), LLE [64] (see [22,34,43])
and Laplacian Eigenmaps [7] (see [72]) or probabilis-
tic latent variable models such as the commonly used

GPLVM [42] and GPDM [82] (see [80,52,32,31,79]).
More recently, [75] introduced the use of Conditional
Restricted Boltzmann Machines, composed of large col-

lections of discrete latent variables.

Instead of building priors on poses or motion mod-
els, other approaches learn a mapping between the im-

age space and the pose space. These approaches re-
cover the pose directly from silhouettes and image fea-
tures [62,1,73,10]. In [74], for instance, pose estima-

tion is formulated as inference in a conditional random
field model where the observation potential function is
learned from a large set of training data.

2.3 Integrated Action Recognition and Pose

Estimation

Using pose information for labeling actions is not new.

As previously discussed in 2.1, some of the earliest works
in action recognition focused on tracking body parts
and classifying the joint movements. More recent ap-

proaches which follow this line of work include [90,3,
33], though they all assume that poses are readily avail-
able, either from hand labeling [90,3] or from an inde-

pendent tracker [33]. In the context of gesture and sign
language recognition, as well as facial expression recog-
nition, a common model is to first track the hands and

or face and then perform classification based on the es-
timated pose parameters. Gesture recognition is beyond
the scope of the present work and we refer the readers

to the review article [50].

Little work, however, has been done to leverage ac-

tion labels for pose estimation, as much of the previous
work in pose estimation has been focused on sequences
of single action classes rather than longer multi-activity

sequences. In [59], an annealed particle filter [19] was
used for tracking in a single low dimensional space trained
on a few basic actions; action classification was then

performed on the tracked poses. A similar approach was
proposed in [17] where PCA was used for dimensional-
ity reduction and a hidden Markov model for modeling

dynamics, but in contrast to [59], transitions between
different actions are modeled explicitly. Finally, in [35],
multiple particle filters were used in parallel in activity-

specific latent spaces; pose likelihoods from each of the
particle filters were then combined and normalized into
a pseudo-distribution from which the individual pose

and action label are selected, based on the highest prob-
ability.

Since complexity increases with the number of ac-
tions and many dimensionality reduction techniques strug-

gle to establish useful embeddings for a high number of
actions, mixture models [46,44,45] or switching mod-
els [55,34,15] that rely on action-specific manifolds have

been shown to be more flexible. We also follow the con-
cept of action-specific manifolds. However, we do not
need to observe transitions between actions for train-

ing since we do not model pose estimation as a filtering
problem over time but as an optimization problem over
the manifolds for each frame.

3 Overview

As illustrated in Figure 1, our framework begins with
2D appearance-based action recognition based on low-

level appearance features (Section 4). The confidence
measure of the action labels are then used to distribute
the particles in the particle-based optimization scheme

over the action-specific manifolds and the pose is esti-
mated by an optimization over the entire set of mani-
folds (Section 5). Finally, we perform 3D pose-based ac-

tion recognition based on pose-based features extracted
from the estimated poses (Section 4.3).

4 Action Recognition

4.1 Hough Forest Classifier

For classifying the actions, we use the Hough-transform

voting method of [89], which can be easily adapted
to use both appearance features as well as pose-based
features. A random forest, i.e. a Hough forest [28], is

trained to learn a mapping between features extracted
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(a) joint distance (b) plane (c) normal plane (d) velocity (e) normal velocity

Fig. 2 Pose-based features used in the 3D pose-based action recognition. (a) Euclidean distance between two joints (red). (b)
Plane feature: distance between a joint (red) and a plane (defined by three joints - black). (c) Normal plane feature: same as
plane feature, but the plane is defined by its normal direction of two joints (black squares) centered at a third joint (black
circle). (d) Velocity feature: velocity component of a joint (red) in the direction of two joints (black). (e) Normal velocity
feature: velocity component of a joint in normal direction of the plane defined by three other joints (black).

from the data (either from appearance or pose) and a
corresponding vote in an action Hough space. Each tree
T in the Hough forest is constructed from a set of anno-

tated features P = {(Fi, ai, di)}. Fi, feature i, can be
either appearance-based or pose based; ai is the action
label (ai ∈ A) and di is the temporal displacement of

the feature center with respect to the action center in
the sequence.

Trees are built recursively, starting with the entire

collection of features at the root. At each non-leaf node,
a large pool of binary tests t associated with the feature
values are randomly generated to split the annotated

features P into two subsets, PL(t) and PR(t). The op-
timal binary test t? maximizes the gain ∆H(t), where

∆H(t) = H(P)−
∑

S∈{L,R}

|PS(t)|
|P|

·H(PS(t)). (1)

Depending on the measure H used, nodes can be either

classification or regression nodes. For classification, en-
tropy

H(P) = −
∑
a∈A

p(a|P) log p(a|P) (2)

is used, where p(a|P) is given by the percentage of sam-
ples with class label a in the set A. For regression, the

sum-of-squared-differences is used as an objective func-
tion:

H(P) =
1

|P|
∑
a∈A

∑
i:ai=a

∥∥di − da
∥∥2
2
, (3)

where da is the mean of the temporal displacement vec-
tors for class a. The t? found is stored at the node and

the sets PL(t
?) and PR(t

?) are passed to the left and
right child node. The tree grows until some stopping cri-
terion is met, i.e. the child node is of a maximum depth,

or there are less than a minimum number of patches

remaining. When training is complete, the leaves store
the proportion of features per class which reached the
leaf L (pLa ) and the features’ respective displacement

vectors (DL
a ).

At classification time, features are densely extracted
from the test track and passed through all trees in the

forest. The features are split according to the binary
tests stored in the non-leaf nodes and, depending on
the reached leaf L, cast votes proportional to pLa for

the action label a and the associated temporal center.

4.2 Appearance Features

When using appearance features with Hough forests, Fi

is a spatio-temporal cuboid (15x15x5 pixels) extracted
from feature channels such as spatial gradients or op-
tical flow, i.e. Fi = (I1i , ..., I

f
i , ...I

F
i ), where each Ifi is

channel f at patch i and F is the total number of
channels. We use the same low-level appearance fea-
tures as [89]: colour, dense optical flow [12] and spatio-

temporal gradients. The binary tests at each node are
comparisons of two pixels at locations p ∈ R3 and
q ∈ R3 in feature channel f with some offset τ :

t (f ;p, q; τ) =

{
0 if If (p)− If (q) < τ
1 otherwise

(4)

where p, q, f and τ are learned during training by

optimizing (1).

4.3 Pose Features

For encoding pose information, we have adopted the

relational features introduced by [53]. These features
describe geometric relations between specific joints in
a single pose or a short sequence of poses (e.g. the dis-

tance between the shoulder and the wrist, (see Fig. 2 (a))
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or the distance of the wrist with respect to a plane

formed by the shoulder and hip joints (see Fig. 2 (b)).

Given multiple instances of an action, relational fea-
tures are more robust to spatial variations than the
poses themselves [53]. Previous works have also shown

that semantically similar motions belonging to the same
action are not necessarily numerically similar [39,53];
by encoding the pose in a relative manner, it is easier

to capture semantic similarity [53]. While [53] hand-
tuned the features for indexing and retrieval of motion
capture data, the Hough Forest framework selects the

optimal features during training.

Let pji,t ∈ R3 and vji,t ∈ R3 be the 3D location and
velocity of joint ji at time t. The joint distance fea-

ture F jd (see Figure 2(a)) is defined as the Euclidean
distance between joints j1 and j2 at time t1 and t2 re-
spectively:

F jd(j1, j2; t1, t2) = ‖pj1,t1 − pj2,t2‖, (5)

If t1 = t2, then F jd is the distance between two joints
in a single pose; if t1 6= t2, then F jd would encode
distances between joints separated by time.

The plane feature F pl (see Figure 2(b)) is defined as

F pl(j1, j2, j3, j4; t1, t2)

= dist
(
pj1,t1 , 〈pj2,t2 , pj3,t2 , pj4,t2〉

)
, (6)

where 〈pj2 , pj3 , pj4〉 indicates the plane spanned by pj2 ,
pj3 , pj4 , and dist (pj , 〈·〉) is the Euclidean distance from

point pj to the plane 〈·〉. Similarly, the normal plane
feature Fnp (see Figure 2(c)) is defined as

Fnp(j1, j2, j3, j4; t1, t2)

= dist
(
pj1,t1 , 〈pj2,t2 , pj3,t2 , pj4,t2〉n

)
, (7)

where 〈pj2 , pj3 , pj4〉n indicates the plane with normal
vector pj2 − pj3 passing through pj4 .

The velocity feature F ve (see Figure 2(d)) is defined
as the component of vj1,t1 along the direction of pj2−pj3
at time t2:

F ve(j1, j2, j3; t1, t2) =
vj1,t1 · (pj2,t2 − pj3,t2)

‖(pj2,t2 − pj3,t2)‖
. (8)

Similarly, the normal velocity feature Fnv (see Fig-
ure 2(e)) is defined as the component of vj1,t1 in the

direction of the normal vector of the plane spanned by
pj2 , pj3 and pj4 at time t2:

Fnv(j1, j2, j3, j4; t1, t2) = vj1,t1 · n̂〈pj2,t2 ,pj3,t2 ,pj4,t2 〉, (9)

where n̂〈·〉 is the unit normal vector of the plane 〈·〉.
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based action recognition. Two camera views as well as the
fused confidences of all four camera views are shown for
frames 500-900 of episode 0-11. Action confidences are gen-
erally higher after fusion, i.e. higher peaks.

Binary tests for the pose features can be defined as
follows:

t (f ; j1, .., jn; t1, t2; τ)

=

{
0 if F f (j1, .., jn; t1, t2) < τ
1 otherwise

, (10)

where f , j1...jn, t1, t2, τ are pose-based feature types,
joints, times and thresholds respectively1. The param-

eters of the binary tests are selected during training as
for the appearance features.

4.4 Multiview Action Recognition

For 2D action recognition, a separate classifier is trained

for each of the cameras in the multi-view setup; results
from the individual classifiers are then combined with
standard classifier ensemble methods. Motivation for

fusing the single views is based on the assumption that
actions which are ambiguous in one view, e.g. due to
self-occlusion, may be more distinguishable from an-

other view.

2D action recognition is performed according to the

Hough-transform voting method presented in [89]. It
breaks down the action recognition problem into an ini-
tial localization stage, which generates tracks of the in-
dividual performing the action, and a subsequent classi-

fication stage, which assigns action labels to the tracks.
In scenarios where the cameras are fixed, it is not nec-
essary to build the tracks with a tracking-by-detection

1 We have kept all planes to be defined by joints at t2,
though planes can in theory be defined in space-time by joints
at different time points.
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Algorithm 1 Interacting Simulated Annealing over E
For k = 1, . . . , It
• Selection

– ∀si ∈ Sk−1: wi = exp
(
−βk · V

(
ri, ti, Θi

))
– ∀si ∈ Sk−1: wi = wi/

∑
sj∈Sk−1

wj

– Sk = ∅; ∀si ∈ Sk−1 draw u from U [0, 1]:
If u ≤ wi/maxsj∈Sk−1

wj then

• Sk = Sk ∪ {si}
Otherwise
• Sk = Sk ∪ {sj}, where sj is selected with

probability wj

• Mutation
– µ = 1

|Sk|
∑

sj∈Sk
(rj , tj , Θj)

Σ = αΣ

|Sk|−1

(
ρ I+∑

sj∈Sk

(
(rj , tj , Θj) − µ

) (
(rj , tj , Θj) − µ

)T )
– ∀si ∈ Sk sample (ri, ti, Θi) from N ((ri, ti, Θi), Σ)

technique as presented in [89]. Instead, background sub-
traction is used to generate silhouettes of the person

performing the action (Figure 1). Bounding boxes are
then extrapolated around the silhouette and the tra-
jectory of the bounding boxes is smoothed to build the

track.
The output of the classification stage is a confidence

score of each action class over time, normalized such

that the confidences over all classes at any time point
sum up to 1. As classifier combination strategy, the
max-rule is used to fuse the outputs from the multi-

ple cameras [37] (see Figure 3).

5 3D Human Pose Estimation

5.1 Optimizing Over a Set of Manifolds

Having a skeleton and a surface model of the human,

the human pose is represented by the joint angles Θ =
θ1, · · · , θD ∈ EΘ where each joint has between 1 and
3 degrees-of-freedom (DOF). For instance, the skeleton

provided for the TUM kitchen dataset [77] comprises
26 joints, where the number of angles associated with
each joint is 3 (D = 78). The global rotation r and

translation t define the position of the root, which is
the middle of the pelvis. This yields a D+6 dimensional
state space denoted by E. In this paper, we formulate

pose estimation as an optimization problem over E for
a given positive energy function V , i.e. minx∈E V (x).

We use the negative log-likelihood based on edge

and silhouette features in [68], as the energy function:

V (x) = λedge · Vedge(x) + λsilh · Vsilh(x). (11)

λedge and λsilh controls the influence of the edge and
silhouette terms respectively. Vedge and Vsilh are deter-

mined by comparing the edges and silhouettes in the

observed image versus that which is generated by pro-

jecting the human model according to the pose encoded
in x. More precisely,

Vedge =
|EP (x) /∈ EI |

|EP (x)|
, (12)

i.e., the fraction of pixels observed in EP (x), the pro-
jected edge map from the model, which do not overlap

with EI , the edge map observed in image I by applying
a Sobel operator. Similarly,

Vsilh =
|SP (x) /∈ SI |
2 · |SP (x)|

+
|SI /∈ SP (x)|

2 · |SI |
, (13)

i.e., the fraction of pixels in SP (x), the projected sil-
houette from the model, which do not overlap with SI ,

the silhouette observed in image I by applying back-
ground subtraction and vice versa. Note that edges and
silhouettes are not optimal features for human pose es-

timation, since edges are sensitive to background clut-
ter, clothing textures and wrinkles, while silhouettes are
sensitive to occlusions and background changes. How-

ever, the associated energy function is fast to compute
and therefore fixed for all our experiments.

As a baseline, we implemented Interacting Simu-

lated Annealing (ISA), a particle-based annealing op-
timization scheme over E (Algorithm 1). ISA has been
used previously in the multi-layer pose estimation frame-

work in [24]. The optimization scheme, based on the
theory of Feynman-Kac models [18], iterates over a se-
lection and mutation step, and is also the underlying

principle of the annealed particle filter [19].
In the following, we briefly describe the notations

used in Algorithm 1 and throughout the paper. The set

of particles is denoted by S. When optimizing over E, a
particle is given by si = (ri, ti, Θi) and an estimate of
the pose is given by the weighted mean of the particles

after the last iteration, i.e. x̂ =
∑

si∈S(w
i ·si). Although

the weighted mean may not be the optimal choice for a
multi-modal distribution, the annealing emphasizes the
dominant mode and justifies the use of the weighted

mean [26].
In our experiments, we use a polynomial annealing

scheme:

βk = (k + 1)b, (14)

where βk is the annealing temperature, k is the iteration

and b = 0.7. The mutation step is implemented with
the scaling factor αΣ = 0.4 and the positive constant
ρ = 0.0001. The uniform distribution and the normal

distribution are denoted by U [0, 1] andN (µ,Σ), respec-
tively.

We modify the baseline algorithm to optimize over

a set of manifolds instead of a single state space. To
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B 
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2D AR 
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Select p2 

A 

High-dim. 

state space 

Set of low-dim. 

manifolds 

Fig. 4 Overview of particle-based optimization scheme for pose estimation. For each action class a, we learn an embedding
in a low-dimensional manifold Ma. The manifolds are indicated by the small circles and the high-dimensional state space E
is indicated by the large circle. Having estimated the pose xt−1, a set of particles is selected from the previous particle sets
(Select p1). To this end, the particles in E are mapped by fa to Ma where each particle is associated to one of the manifolds.
This process is steered by a prior distribution on the actions obtained by a 2D action recognition system. Since the manifolds
are action-specific, the pose for the next frame can be predicted by the function ha. The first optimization step, Optimization
A, optimizes jointly over the manifolds and the human poses embedded in the manifolds. Since our manifolds do not cover
transitions between actions, we run a second optimization step, Optimization B, over the particles mapped back to the state
space E by ga. Before the optimization, the particle set is augmented by making use of the embedding error of the previous
pose xt−1 (Select p2).

this end, we learn for each class a an action-specific

low-dimensional manifold Ma ⊂ Rda with da � D. We
assume that the following mappings are available:

fa : EΘ 7→ Ma, ga : Ma 7→ EΘ, ha : Ma 7→ Ma,

(15)

where fa denotes the mapping from the state space to
the low-dimensional manifolds, ga the projection back

to the state space, and ha the prediction within an
action-specific manifold. Since the manifolds encode only
the space of joint angles, a low-dimensional represen-

tation of the full pose is denoted by ya = (r, t, Θa)
with Θa = fa(Θ). When optimizing over the set of
manifolds Ma, a particle si = (yia, a

i) stores the cor-

responding manifold label ai in addition to the vector
yia = (ri, ti, Θi

a). Our algorithm operates both in the
state space as well as in the manifolds. An overview of

the algorithm is given in Figure 4.

5.2 Action-Specific Manifolds

Each of the action-specific low-dimensional manifolds,
Ma, is learned from the joint angles Θ in motion cap-

ture data using Isomap [76], a non-linear dimension-
ality reduction technique. As Isomap does not provide
mappings between the high- and low-dimensional pose

spaces, we learn two separate Gaussian Process (GP)
regressions [60], fa (16) and ga (17), to map from the
high-dimensional space to the low-dimensional space

and back, respectively, where m (·) and k (·) denote the

mean and covariance functions.

y = fa (x) ∼ GP (m (x) , k (x, x′)) , (16)

x = ga (y) ∼ GP (m (y) , k (y, y′)) . (17)

In addition, a third GP regression, ha, is learned to
model temporal transitions between successive poses
within each action-specific manifold:

yt = ha (yt−1) ∼ GP (m (yt−1)) , k (yt−1, y′t−1)) . (18)

While we have chosen Isomap for dimensionality reduc-
tion and GP regression to learn the mappings, other
dimensionality reduction and regression techniques are

also suitable.

5.3 Theoretical Discussion

As mentioned in Section 5.1, one seeks the solution of

the minimization problem minx∈E V (x). When optimiz-
ing over a set of manifolds, the problem becomes

min
a∈A

(
min
y∈Ma

V (ga(y))

)
. (19)

Minimizing the problem this way, i.e. searching for the

global minimum in each of the manifolds Ma and then
taking the best solution mapped back to the state space,
does not scale well with the number of manifolds. Hence,

we propose to optimize over all manifolds jointly:

(ŷ, â) = argmin
a∈A,y∈Ma

V (ga(y)). (20)
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Fig. 5 HumanEva-II. Action recognition prior from camera
C1 (a). The curves show the action confidence per frame.
Note the smooth transitions between the actions around
frame 800 for subject S4. After jogging, the subject walks
a few steps before balancing. At the end of the sequence, the
person walks away, as recognized by the action recognition
system. The distribution of the particles among the action-
specific manifolds after Optimization A is shown by the area
plot. The particles move to the correct manifold for nearly all
frames. Pose estimate for jogging (b) and balancing (c).

The optimization over the manifolds (20), however,

does not provide the same solution as the original op-
timization problem over the state space since a low-
dimensional manifold cannot represent the high dimen-

sional poses exactly. Furthermore, the data used for
learning the manifoldsMa might not contain the correct
pose at all. Therefore, we perform a second optimiza-

tion over the full state space starting with the solution
of (20), x0 = gâ(ŷ), as initial point:

x̂ = argmin
x∈E

V (x). (21)

Since ISA converges to the global optimum in the prob-
abilistic sense [26], the original problem is solved. While
ISA can be directly used to optimize (21) without us-

ing the solution of (20) (baseline), we will show that the
two-step optimization will drastically reduce the pose
estimation error if the number of iterations and parti-
cles for ISA are limited. A more detailed description of

the two optimization steps is given Section 5.4.

Note that the solution of (20), â, is not unique since

there is usually an overlap of poses between the man-
ifolds. If the manifolds do not overlap much, the opti-
mization of the pose propagates the particles into the

“right” manifold, i.e. the correct action, as plotted in
Figure 5.

5.4 Algorithm

The proposed algorithm at a glance is outlined as Al-
gorithms 2 and 3 and illustrated in Figure 4. The dif-
ferent steps Optimization A, Select p2, Optimization B

and Select p1 are described in the following:

Algorithm 2 Optimizing over Ma

Optimization A:

For k = 1, . . . , ItA
• Selection

– ∀si ∈ SM
k−1: wi = exp

(
−βk · V

(
ri, ti, gai(Θi

a)
))

– ∀si ∈ SM
k−1: wi = wi/

∑
sj∈SM

k−1
wj

– SM
k = ∅; ∀si ∈ SM

k−1 draw u from U [0, 1]:

If u ≤ wi/maxsj∈SM
k−1

wj then

• SM
k = SM

k ∪ {si}
Otherwise
• SM

k = SM
k ∪ {sj}, where sj is selected with

probability wj

• Mutation
– ∀a ∈ A: µa = 1

|Sa|
∑

sj∈Sa
Θj

a

with Sa = {si ∈ SM
k : ai = a}

∀a ∈ A: Σa = αΣ

|Sa|−1

(
ρ I+∑

sj∈Sa
(Θj

a − µa) (Θj
a − µa)T

)
µ0 = 1

|SM
k
|
∑

sj∈SM
k

(rj , tj)

Σ0 = αΣ

|SM
k
|−1

(
ρ I+∑

sj∈SM
k

(
(rj , tj) − µ0

) (
(rj , tj) − µ0

)T )
– ∀si ∈ SM

k sample Θi
a from N (Θi

a, Σai) and (ri, ti)
from N ((ri, ti), Σ0)

Select p2:

• â = argmina∈A

∥∥∥Θ̂t−1 − ga(fa(Θ̂t−1))
∥∥∥

(Σâ)ii =
|Θ̂t−1−gâ(fâ(Θ̂t−1))|i

3

• SE
ItA

= ∅; ∀si ∈ SM
ItA

draw u from U [0, 1]:
If u < p2 then

• SE
ItA

= SE
ItA

∪
{(

ri, ti, gai(Θi
a)

)}
Otherwise

• SE
ItA

= SE
ItA

∪
{

(ri, ti, Θ̂)
}

, where Θ̂ is sampled

from N (Θ̂t−1, Σâ)

Optimization B:

For k = ItA + 1, . . . , ItB
• Selection

– ∀si ∈ SE
k−1: wi = exp

(
−βk · V

(
ri, ti, Θi

))
– ∀si ∈ SE

k−1: wi = wi/
∑

sj∈SE
k−1

wj

– SE
k = ∅; ∀si ∈ SE

k−1 draw u from U [0, 1]:

If u ≤ wi/maxsj∈SE
k−1

wj then

• SE
k = SE

k ∪ {si}
Otherwise
• SE

k = SE
k ∪ {sj}, where sj is selected with

probability wj

• Mutation
– µ = 1

|SE
k
|
∑

sj∈SE
k
(rj , tj , Θj)

Σ = αΣ

|SE
k
|−1

(
ρ I+∑

sj∈SE
k

(
(rj , tj , Θj) − µ

) (
(rj , tj , Θj) − µ

)T )
– ∀si ∈ SE

k sample (ri, ti, Θi) from N ((ri, ti, Θi), Σ)

Optimization A: Since ISA (Algorithm 1) is not di-
rectly applicable for optimizing over a set of manifolds,
we have to modify the algorithm. For the weighting, the

particles si = (ri, ti, Θi
a, a

i) with Θi
a ∈ Mai are mapped
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back to the full space in order to evaluate the energy

function V :

wi = exp
(
−βk · V

(
ri, ti, gai(Θi

a)
))

, (22)

where k is the iteration parameter of the optimiza-

tion. The weights of all particles are normalized such
that

∑
si w

i = 1. Note that the normalization does not
take the label of the manifold ai into account. As a re-

sult, particles in a certain manifold might have higher
weights than particles in another manifold since their
poses fit the image data better. Since particles with

higher weights are more likely to be selected, the distri-
bution of the particles among the manifoldsMa changes
after the selection step. This is desirable since the par-

ticles should migrate to the most likely manifold to get
a better estimate within this manifold. While the selec-
tion is performed as in Algorithm 1, the mutation step

needs to be adapted since the particles are spread in
different spaces. To this end, we use |A| mutation ker-
nels Ka, one for each manifold, and an additional ker-

nel K0 for the global position and orientation. In our
implementation, we use Gaussian kernels with covari-
ance matrices Σa proportional to the sample covariance

within a manifold, i.e. Sa = {si ∈ S : ai = a}:

Σa=
αΣ

|Sa| − 1

ρI+
∑

si∈Sa

(Θi
a−µa)(Θ

i
a−µa)

T

 , (23)

µa =
1

|Sa|
∑

si∈Sa

Θi
a. (24)

The scaling factor αΣ = 0.4 and the positive constant

ρ = 0.0001, which ensures that the covariance does not
become singular, are fixed for all kernels. The kernel K0

for rotation and translation is computed over the full

set of particles S:

Σ0=
αΣ

|S| − 1

(
ρI+

∑
si∈S

(
(ri, ti)−µ

) (
(ri, ti)−µ

)T)
, (25)

µ =
1

|S|
∑
si∈S

(ri, ti). (26)

Since we compute the extra kernel K0 instead of tak-
ing (r, t) as additional dimensions for the kernels Ka,
the correlation between (r, t) and Θa is not taken into

account. However, the number of particles per mani-
fold can be very small, such that K0 computed over all
particles provides a better estimate of the correlation

between the global pose parameters (r, t).

Algorithm 3 Select p1
• SM = ∅; ∀si ∈ SM

ItA
draw u from U [0, 1]:

If u < p1 then
• SM = SM ∪ {si}

Otherwise
• SM = SM ∪

{(
rj , tj , faj (Θj), aj

)}
,

where (rj , tj , Θj) ∈ SE
ItB

and aj is selected with

probability p(A |T = t, I)

Select p2: Before continuing with the optimization in
the full state, the set of particles S needs to be mapped
from the manifolds Ma to E, where the particles build

the initial distribution for the next optimization step.
However, it can happen that the true pose is not well
represented by any of the manifolds. This is typical of

transitions from one action to another, which are not
modeled in our setting. As shown in Figure 8(b), it is
useful to use the previous estimate x̂t−1 = (r̂t−1, t̂t−1, Θ̂t−1)

to augment the initial particle set. To measure the dis-
crepancy between the last estimated pose and the poses
modeled by the manifolds, we compute Σâ based on the

reconstruction error for x̂t−1:

â = argmin
a∈A

∥∥∥Θ̂t−1 − ga(fa(Θ̂t−1))
∥∥∥ , (27)

σâ,i =
|Θ̂t−1 − gâ(fâ(Θ̂t−1))|i

3
. (28)

We create a new set of particles by sampling from the
normal distribution N (Θ̂t−1, Σâ), where Σâ is the di-

agonal matrix with σâ,i as entries. According to the 3σ
rule, this means that nearly all samples are within the
distance of the reconstruction error. The selection pro-

cess between the two particle sets is controlled by the
parameter p2 ∈ [0, 1]. For all si ∈ S, we draw u from the
uniform distribution U [0, 1]. If u < p2, s

i = (ri, ti, Θi) is

added to the new set; otherwise the particle (ri, ti, Θ̂) is
added to the set, where Θ̂ is sampled fromN (Θ̂t−1, Σâ).

Optimization B: The second optimization step even-
tually runs ISA (Algorithm 1) on the full state space.
However, we do not start from the beginning but con-

tinue with the optimization, i.e. when ItA is the number
of iterations used for Optimization A, we continue with
βItA+1 instead of β1.

Select p1: After Optimization A, all the particles may

aggregate into one single manifold, so we distribute the
particles again amongst the manifolds Ma when mov-
ing to the next frame It; otherwise, we get stuck in a

single action class. Similar to the previous selection, we
make use of two particle sets; the particles SM in the
manifolds Ma after Optimization A and the particles in

the state space SE after Optimization B. The selection
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is controlled by the parameter p1 ∈ [0, 1] (Algorithm 3).

For all si ∈ SM, we draw u from the uniform distribu-
tion U [0, 1]. If u < p1, s

i is added to the new set; oth-
erwise the particle (ri, ti, Θi) ∈ SE is mapped to one of

the manifolds and added to the set. The manifoldMai is
selected according to the probability p(A = a|T = t, I),
yielding the mapped particle (ri, ti, fai(Θi), ai). In our

experiments, we use two choices for p(A|T = t, I):

p(A = a |T = t, I) = 1

|A|
, (29)

p(A = a |T = t, I) = p(A = a | It−l · · · It+l). (30)

The first prior (29) is a uniform prior that is indepen-
dent of the current frame and results in a joint optimiza-
tion over the manifolds Ma∈A and poses y ∈ Ma. The

second prior (30) is termed action prior. It distributes
the particles to manifolds that are more likely a-priori
based on the 2D action recognition results. Since a man-

ifold Ma cannot be explored when p(A = a|T = t, I) =
0 and {si ∈ SM : ai = a} = ∅, we use the particle set
SM to increase the robustness to temporary errors in

the action prior as demonstrated in Figure 8(a). Note
that a zero-probability error for the true manifold over
many frames cannot be compensated. In our framework

(Figure 1), p(A|It−l · · · It+l) is obtained by the Hough-
transform voting method described in Section 4 using
appearance features.

Finally, we want to emphasize that the proposed
method for optimizing over the manifolds relates to
other sampling strategies like stratified sampling. While

the manifolds can be regarded as subsets of the full state
space, the action prior distributes the samples over the
subspaces. In contrast to stratified sampling, however,

the subsets are not assumed to be disjoint and to cover
the full space.

6 Experiments

For the action prior-based pose estimation system, we
test on both HumanEva-II [71] and the TUM kitchen
dataset [77]. We also illustrate the complete framework

on the TUM kitchen dataset and run two sets of ex-
periments, one with multi-subject training data (full
training set) and one with a single subject (S1 training

set) for training to test the generalization capabilities
of the framework.

6.1 Datasets

HumanEva-II The HumanEva-II [71] dataset is a stan-
dard benchmark on 3D human pose estimation. It con-

tains two sequences, one for each subject, S2 and S4;
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Fig. 6 Confusion matrices for fused action outputs of 2D
appearance-based action recognition using (a) the S1 training
set and (b) the full training set. Average performance over all
classes is 0.71 for both training sets.

each sequence has three actions (see Figure 5). The
dataset provides a model for subject S4, which we also
use for subject S2 despite differences in body shape.

The human pose is represented by 28 parameters (13
joints, D = 22) [24]. We perform two trials: training on
S2 and testing on S4 and vice versa. For learning the

action-specific manifolds, we use the tracking results of
the multi-layer tracker [24]2. We split the data into the

2 We have used tracking results to create the training data
since the motion capture data for HumanEva II is withheld for
evaluation purposes. Note that training data from markerless
tracking approaches is in general noisier and less accurate
than data from marker-based systems.
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Table 1 Individual camera and fused action recognition performance for subjects 1-4; fused performance is higher than any
individual camera view for each subject. While the average performance from each camera view using the S1 training set is
less than using the full training set, fusing each of the camera views makes up for the difference, such that the average fused
performance is equal.

S1 training set full training set

C1 C2 C3 C4 Fused C1 C2 C3 C4 Fused

S1 0.60 0.54 0.62 0.61 0.63 0.59 0.63 0.62 0.61 0.63
S2 0.58 0.55 0.45 0.61 0.65 0.63 0.62 0.60 0.53 0.66
S3 0.72 0.75 0.68 0.69 0.77 0.76 0.80 0.78 0.79 0.79
S4 0.68 0.57 0.66 0.67 0.78 0.73 0.73 0.71 0.69 0.75

average 0.65 0.60 0.60 0.64 0.71 0.68 0.70 0.68 0.65 0.71

three action classes and discard the transitions between
the actions.

TUM Kitchen The TUM kitchen dataset [77] is a more
challenging dataset than HumanEva-II. The dataset con-

tains 20 episodes of recordings from 4 views of 4 sub-
jects setting a table. In each episode, a subject moves
back and forth between the kitchen and a dining ta-

ble, each time fetching objects such as cutlery, plates
and cups and then transporting them to the table. The
dataset is particularly challenging for both action recog-

nition as well as pose estimation, as the actions are
more subtle than standard action recognition bench-
marks such as KTH [67] and Weizmann [9] and parts

of the body are often occluded by objects such as draw-
ers, cupboard doors and tables (see Figure 1). Sample
images of the actions can be seen in Figure 13. The pose

is represented by the provided model with 84 parame-
ters (26 joints3, D = 78).

Testing was done on episodes 0-2, 0-4, 0-6, 0-8, 0-

10, 0-11, and 1-6. We use two sets of training data,
a full set (i.e. all episodes in the dataset except those
used for testing) as well as a limited set on episodes

1-0 to 1-5, recorded only from subject 1, to test gener-
alization capabilities of the framework. For the action
recognition, we use the 9 labels that are annotated for

the ‘left hand’ [77]. Since these labels are determined by
the activity of the arms and we would like the manifolds
to be representative of the entire body, we further split

the idle/carry class according to whether the subject is
walking or standing.

6.2 2D Appearance-based Action Recognition

HumanEva-II We do not quantitatively evaluate the
2D action recognition on the HumanEva-II sequences
as the actions are very simple and the system correctly

3 The original model has 28 joints but we do not consider
the gaze since it has 0 DOF. The root joint is represented by
the global orientation and position (6 DOF).

identifies each of the actions. Examples of the action
confidences from camera C1 are shown in Figure 5(a).

TUM Kitchen For each camera view, we trained a for-
est of 15 trees of depth 17 each with 50000 random tests
generated at all the nodes. Results of the appearance-

based action recognition for each individual camera view
and for the two different training sets are shown in
Table 1. We report here the classification rate from a

frame-by-frame basis, averaged over the different action
classes. For each sequence, we disregard a time window
of 4 frames on either side of a transition from one ac-

tion to another. Action recognition performance does
not vary much from camera to camera, though there
is a significant variation between subjects, i.e. for both

training sets, S3 and S4 are easier to classify than S1
and S2.

For classifier fusion, we used the max-rule, which
gave the best performance in comparison to other stan-
dard ensemble methods [37]. The classifier fusion has a

greater effect on the S1 training set (increased perfor-
mances of up to 21%) than on the full training set (in-
creased performances of up to 13%), so that even with

lower average performance on the individual cameras,
the fused performance is still equal (0.71). A sample of
the normalized classifier output for cameras 1 and 3 as

well as the the fused results are shown in Figure 3.

We show a confusion matrix of the fused results for
the S1 training set in Figure 6(a); results for the full

training set are similar in trend. The most difficult ac-
tions to identify are “idle/carry (still)”, “take object”
and “release grasp”. In particular, “take object” and

“release grasp” are transition actions4; such high-level
movements may be difficult to define based on low-level
features alone.

4 “Take object” always occurs between “reach” and
“idle/carry“ while ”release grasp” always occurs before
‘ ‘idle/carry”, after interacting with an object, the drawer or
the cupboard.
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6.3 3D pose estimation

For evaluating the pose estimation, we measure the ab-
solute 3D error of the estimated joint positions and re-

port the mean error and standard deviation over frames.
We perform only one run for each sequence and method,
but we use the same random generator with the same
seed for all experiments. The standard deviation over

several runs will be reported for the TUM kitchen dataset.
The methods are initialized with the ground-truth pose,
but the initial pose can be also recovered from the sil-

houettes as in [24].

HumanEva For comparison, we report the results for
optimizing over the state space E (baseline), i.e. Algo-

rithm 1, and the proposed algorithm with a uniform
prior and an action prior, where the action prior is
computed as described in Section 4. For evaluation, we

use 5 iterations for Optimization A, and 10 iterations
for Optimization B unless otherwise specified. For the
baseline, we run Algorithm 1 with 15 iterations. Sam-

ple pose estimates using the action prior are shown in
Figure 5(b) and (c).

According to [24,71], pose estimation requires usu-

ally at least 200-250 particles to achieve good results
on this dataset. We perform the optimization of the 28
parameters with 200 down to 25 particles as plotted in

Figure 7. Unsurprisingly, the error for the baseline in-
creases significantly when the number of particles drops
below 100. When optimizing over the manifolds and the

poses embedded in the manifolds, the error increases
gently with a decreasing number of particles. Since the
dataset contains only 3 action classes, the uniform prior

performs very well and differences between the two pri-
ors become prominent only when using very few par-
ticles per action class. This indicates that the action

prior scales better with a large number of classes since
this basically limits the number of particles per action
class. In general, the uniform prior describes the sce-

nario where the action recognition is not better than
a random guess5. Timings and mean errors are given
in Table 4. It is interesting to note that the errors for

subject S2 is either comparable or even lower than for
S4, suggesting that having a perfect body model is not
essential to achieve reasonable pose estimates.

In Figure 8, we plot the impact of the parameters
on the tracking accuracy. The results clearly support
our design decisions for the algorithm (Section 5.4).

In Figure 9 and Table 2, we show the tracking per-
formance with respect to number of camera views us-

5 Note that the worst-case scenario would be if the action
recognition is biased and always misclassified certain actions
as others.

(a) S2 (b) S4

Fig. 7 3D pose estimation error with respect to number of
particles. The proposed approach performs significantly bet-
ter than the direct optimization in the state space E (base-
line), particularly for a small number of particles. The dis-
crepancy between uniform prior and the prior obtained from
2D action recognition gets larger for fewer particles. In this
case, the number of particles per manifold becomes very small
for a uniform distribution. Note that competitive results are
still achieved with only 25 particles. Timings are given in Ta-
ble 4.

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

p
1

E
rr

or
 (

m
m

)

(a) p1

0 0.2 0.4 0.6 0.8 1
44

46

48

50

52

54

56

p
2

E
rr

or
 (

m
m

)

(b) p2

0 5 10 15

50

60

70

80

90

Iterations
A
 (out of 15)

E
rr

or
 (

m
m

)

(c) ItA

Fig. 8 Evaluation of optimization parameters for pose esti-
mation. (a) Select p1: The best result is obtained by p1 = 0.5,
which shows the benefit of taking both particle sets SM and
SE into account. For p1 = 1, the particles SE from Opti-
mization B are discarded. (b) Select p2: The best results are
achieved with p2 ∈ [0.25, 0.5]. It shows the benefit of taking
the reconstruction error for x̂t−1 into account. (c) Number of
iterations for Optimization A (ItA) and Optimization B (15-
ItA). The total number of iterations was fixed to 15. Without
a second optimization step (ItA=15), the error is significantly
higher than for the optimal setting (ItA=5).

Table 2 3D pose estimation error (mean ± standard devia-
tion over frames) of the optimization with respect to number
of views (camera). ap: action prior; up: uniform prior.

seq. cameras ap (mm) up (mm)

S2 C1-C2 54.6 ± 20.8 54.7 ± 21.5
S2 C1-C4 44.9 ± 9.5 49.4 ± 19.0
S4 C1-C2 56.9 ± 29.0 60.9 ± 32.5
S4 C1-C4 45.2 ± 13.4 45.2 ± 11.8

ing 200 particles. Again, the proposed approach signif-
icantly outperforms the baseline. At first glance, the

uniform prior and the action prior seem to perform
similarly, due to the scaling of the plot from the large
error of the baseline, though the action prior actually

reduces the error on average by 4%. The benefit of the
action prior is more evident when less particles are
used, as shown in Figure 7, since this results in even

fewer particles being distributed to each action class.
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Table 3 Impact of smoothing.

seq. smoothing ap (mm) up (mm)

S2 no 44.9 ± 9.5 49.4 ± 19.0
S2 yes 42.4 ± 8.9 47.0 ± 18.5
S4 no 45.2 ± 13.4 45.2 ± 11.8
S4 yes 42.4 ± 13.0 42.4 ± 11.0

Fig. 9 3D pose estimation error with respect to number of
views for HumanEva-II. For the setting with two views, cam-
eras C1 and C2 are taken. The reduced number of views re-
sults in more ambiguities. The proposed approach handles
these ambiguities better than the direct optimization in the
state space E (baseline). The mean errors are also given in
Table 2.

We also evaluated the impact of smoothing the es-
timated joint estimates over time. Since the pose esti-

mates are obtained by computing the mean of a high-
dimensional distribution approximated by as few as 200
particles, the estimates are very noisy. Therefore, we fil-

tered the 3D joint positions with a low pass filter. In
our experiments, we processed the data by 3 passes of a
moving average with a span of 5 frames. As the results

in Table 3 show, the smoothing reduces the average er-
ror by about 4%-6%.

In Table 5, we compare our approach to state-of-
the-art methods reporting results for HumanEva-II. Al-
though the methods are often not directly compara-

ble, since they rely on different assumptions, the results
show that the proposed method achieves state-of-the-
art performance with respect to accuracy and run time.

Though the multi-layer framework [24] does achieve a
higher accuracy on the full dataset but the approach is
much slower (124 seconds per frame) than the proposed

method (4 seconds per frame) since it uses more expen-
sive image features and a second layer for segmentation-
based pose refinement.

TUM Kitchen Based on the fused results of the action
recognition, we also evaluate the tracking performance.

For the TUM kitchen dataset, we use the provided mod-
els with 84 parameters. The large errors for the baseline
in Figure 10 show that 200 particles are not enough

to optimize over a 84 dimensional search space. Note

that we do not make use of any joint limits or geo-

metric information about the kitchen and use only the
images as input. The proposed approach estimates the
sequences with an accuracy comparable to HumanEva-

II, although the dimensions of the state space increased
from 28 to 84, the number of action classes from 3 to
8 (the ‘open’ and ‘close’ actions are embedded in one

manifold), and the silhouette quality is much worse due
to truncations and occlusions. Compared to the uni-
form prior, the action prior reduces the error in average

by 9%-11% depending on the different training setups.

The detailed results in Tables 6 and 7 show that the

smoothing reduces the error by 7%-8% for the uniform
prior as well as the action prior. Since the training
data may influence not only the action prior but also

the learned manifolds Ma, we evaluated the method for

both training sets. Even when the system is trained
only on one subject (S1 training set), the human poses
are well estimated; showing that the method generalises

well across subjects.

To give an idea of the standard deviation over sev-

eral runs, we performed 5 runs with different seeds for
episode 0-2 using the action prior ; see Table 7. Depend-
ing on smoothing, the standard deviation over runs is

1mm and 1.2mm.

Using the full training set, we also evaluated the

pose estimation error with 300 particles and provide the
results in Table 8. Similar to HumanEva-II, the differ-
ences between action prior and uniform prior become

marginal with an increasing number of particles (see
Figure 7). Increasing the particles from 200 to 300 re-
duces the error by 11% for the uniform prior, whereas

the error is only reduced by 2%-3% for the action prior.
The error reduction is independent of the smoothing,
which reduces the error on average by 8% in both cases,

as with 200 particles. This shows that the action prior
is only beneficial when the number of particles per man-
ifold is very small. Otherwise, the pose estimation ef-

ficiently allocates most of the particles to the relevant
manifolds and achieves accurate pose estimates even
with a uniform prior.

We have chosen to use Isomap, a non-linear em-
bedding technique for creating the action-specific man-

ifolds, though any dimensionality reduction method can
be used. As a comparison, we perform pose estimation
with the action prior using manifolds created by PCA

instead of Isomap. PCA has an advantage over Isomap
in that it does not require additional mappings for tran-
sitioning to and from the high and low-dimensional

spaces. However, it is linear and less expressive than
Isomap; we had to use a 20 dimensional PCA space in
order to retain 90% of the data variance. Transitions

between successive poses were modeled with a GP re-
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Table 4 Computation time per frame and 3D estimation error (mean ± standard deviation over frames) of the optimization
with respect to number of particles. The 2D action recognition takes additional 0.4 seconds for each frame consisting of 4
images, which is roughly the computation time for 20 particles. ap: action prior; up: uniform prior; base: baseline.

Time (sec.) S2 Error (mm) S4 Error (mm)

n ap,up base ap up base ap up base

200 3.89 3.80 44.9 ± 9.5 49.4 ± 19.0 62.9 ± 24.4 45.2 ± 13.4 45.2 ± 11.8 73.1 ± 70.7
100 1.96 1.92 48.2 ± 12.7 55.4 ± 37.8 71.7 ± 25.7 51.9 ± 20.9 51.0 ± 21.3 54.7 ± 25.0
50 0.98 0.96 50.2 ± 13.4 78.7 ± 72.4 98.0 ± 61.1 56.4 ± 19.2 57.6 ± 19.2 98.3 ± 67.4
25 0.5 0.49 69.3 ± 51.1 72.3 ± 51.2 100.5 ± 40.4 61.3 ± 21.2 71.8 ± 29.3 114.3 ± 85.4

(a) S1 training set (b) full training set

Fig. 10 3D pose estimation error for the TUM kitchen dataset using a limited S1 training set and a full training set. The
proposed approach using a 2D action recognition prior performs significantly better than the direct optimization in the state
space E (baseline). Impact of the different training sets, however, is small. Mean and standard deviation are provided in
Tables 6 and 7.

gression in the same manner as the Isomap embeddings

as described in Section 5.2. Pose estimation errors are
shown in Table 9. Using PCA, the error is only 3%-4%
higher, emphasizing the fact that the specific manifold

being used is not essential.

In Section 5.3, we have pointed out that the solu-
tion of the action â is not unique when the manifolds
share poses. Since this is not the case for HumanEva as

shown in Figure 5, we evaluated the estimated manifold
for action recognition on the TUM kitchen dataset. The
estimate â is given by the manifold that contains most

particles after Optimization A (see Section 5.4)6. De-
pending on the prior used and the number of particles,
â corresponds only in 30%-33% the cases to the mani-

fold of the action label. This shows that the estimated
manifold cannot be used for action recognition when
the manifolds overlap since the particles might end up

in any of the manifolds that contain the right pose.

6.4 3D action recognition

TUM Kitchen From the estimated 3D poses, we per-
form 3D action recognition using the pose features de-
scribed in Section 4.3. For each type of feature, we

trained a forest of 15 trees of depth 157 each with 20000
random tests generated at all the nodes. We train on the
3D joint positions provided in the TUM dataset; note

that these poses were determined by a markerless mo-
tion capture system where large errors were manually
corrected. We test using the “ground truth” poses, i.e.

the poses provided in the dataset TUM as well as the
estimated poses using our action prior, uniform prior
and baseline. As per the 3D pose estimation, we com-

pare two different training sets (S1 training set vs. full
training set) and also look at the effects of smoothing
the poses over time.

6 This is equivalent to summing the weights of the particles
before resampling.
7 We use a lower depth than the trees trained for 2D

appearance-based features since the possible number of
unique Fi for pose-based features is much smaller than that
of appearance-based features.
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Table 5 Comparison of pose estimation errors to state-of-
the-art for HumanEva-II. Note that the methods are often not
directly comparable since they rely on different assumptions.
For instance, several methods have been applied only to a
subset of frames (frames), e.g. only the walking activity (up to
frame 350) or only every 20th frame. The number of cameras
(cam) also varies. The error (error) is the average 3D error
in mm and the approximate computational time (time) is
measured in seconds per frame.

method frames time cam error(S2) error(S4)

[5] 28 4 - 48
[4] -350 28 1 101 -
[71] 250 4 83 78
[56] -380 36 4 107 92
[24] 124 4 38 32
[8] 20th - 4 207 292
[13] -350 - 2 53 54
[16] -150 - 4 78 80
[66] 15 4 - 49
[25] -400 30 4 - 36
[27] 9 4 - 50
[17] 15-20 2-3 97 93
ap+sm 4 4 42 42
up+sm 4 4 47 42

We show the action recognition performance in Ta-

ble 10. Unlike the fused 2D action recognition, there is
about 10% performance drop from the full training set
to using only the S1 training set. A similar drop in per-

formance does occur for 2D action recognition in the
single view case (Table 1), though the classifier fusion
scheme compensates for the loss in performance in the

2D case. In contrast to the pose estimation, the action
recognition clearly benefits from more training data.

When testing with the TUM poses, there is little dif-

ference between the joint distance, plane features and
velocity features; combining the three different types of
features does not improve the action recognition and

average classification remains at 0.81. When using the
poses estimated from the action prior with 200 par-
ticles, there is a 7%-10% performance drop from the

TUM poses; the best performance is achieved using the
combined features (0.74) though the velocity features
on the smoothed poses are similar (0.73). When us-

ing the poses estimated from the uniform prior, there
is a further 5% drop; again, the best performance is
achieved using either the combined features or the ve-

locity features from the smoothed poses (both 0.68).
The poses estimated from the baseline algorithm are
too poor to be used for action recognition, indicating

that a pose estimation error over 100mm is insufficient
for reliable pose-based action recognition.

While temporal smoothing has no effect on the joint
distance features and the plane features, it is essen-

tial for the velocity features, which are by definition
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Fig. 11 Normalized action confidences for the 2D
appearance-based action recognition and 3D pose-based ac-
tion recognition from the two training sets for frames 200-700
of episode 0-8. In general, the action confidences are higher
for the 3D pose features than the 2D appearance features, i.e.
higher peaks.

more sensitive to noise. This effect was also observed in

the synthetic experiments of [88] when the TUM poses
were corrupted by additive Gaussian noise. If we use
the poses estimated with 300 particles, which are on

average 2%-3% (action prior) or 11% (uniform prior)
lower in 3D error in comparison to poses estimated with
200 particles, then the action recognition performance

is about 4% higher. Since the pose estimates with (ac-
tion prior) and (uniform prior) become similar with
more particles, the action recognition performance be-

comes similar as well.

In comparison to the 2D action recognition per-
formance (Table 1), using the poses from the action

prior (0.77) or uniform prior (0.76) with the full train-
ing set and 300 particles is better than the fused re-
sults (0.71). Using the S1 training set and 200 particles,

however, performance is about 10% worse. Compar-
ing the action confidence outputs shown in Figure 11,
confidences for the 3D pose-based action recognition is

higher than the 2D appearance-based recognition. Us-
ing the full training versus the S1 training set also re-
sults in slightly higher confidences, though this effect

is more pronounced in the 2D appearance-based out-
puts than the 3D pose-based outputs. When looking at
the confusion matrix (Figure 12), one sees that the most

difficult classes are again the ambiguous actions such as
“release grasp” and “take object”, though performance
is better than the 2D appearance-based system (Fig-

ure 6).
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Table 6 3D pose estimation error for the TUM kitchen dataset in mm (using S1 training set). ap: action prior; up: uniform
prior; base: baseline.

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap 47.8 ± 18.1 60.6 ± 20.7 69.1 ± 29.3 46.9 ± 18.9 60.2 ± 18.4 74.0 ± 33.5 80.2 ± 35.7
up 48.2 ± 17.6 61.5 ± 22.6 71.1 ± 37.1 49.6 ± 20.0 64.7 ± 32.4 159.2 ± 98.0 84.7 ± 35.9
base 116.5 ± 45.1 181.9 ± 70.6 174.8 ± 61.2 183.0 ± 61.4 229.4 ± 85.0 190.6 ± 65.0 155.4 ± 70.4

ap+smooth 43.1 ± 16.5 55.7 ± 19.4 64.1 ± 27.3 41.7 ± 16.5 55.0 ± 16.3 70.0 ± 32.7 76.4 ± 34.4
up+smooth 43.4 ± 15.6 56.6 ± 20.9 66.0 ± 35.1 44.5 ± 18.3 59.3 ± 30.6 153.6 ± 95.9 80.6 ± 34.3
base+smooth 114.3 ± 45.0 179.3 ± 70.7 172.1 ± 61.1 180.3 ± 61.4 227.4 ± 85.1 188.4 ± 64.7 153.3 ± 70.7

Table 7 3D pose estimation error for the TUM kitchen dataset in mm (using full training set). ap: action prior; up: uniform
prior; base: baseline.

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap 48.1 ± 22.4 58.4 ± 27.1 64.6 ± 30.4 45.8 ± 27.8 69.3 ± 39.9 68.7 ± 31.6 75.9 ± 36.5
up 50.3 ± 25.4 57.2 ± 25.5 61.9 ± 27.4 49.0 ± 25.7 67.2 ± 36.9 167.1 ± 114.0 78.6 ± 40.4
base 116.5 ± 45.1 181.9 ± 70.6 174.8 ± 61.2 183.0 ± 61.4 229.4 ± 85.0 190.6 ± 65.0 155.4 ± 70.4

ap+smooth 43.5 ± 21.3 53.2 ± 25.7 59.2 ± 28.8 41.0 ± 26.7 63.8 ± 38.5 64.8 ± 30.8 71.6 ± 35.2
up+smooth 45.6 ± 24.3 51.9 ± 22.9 56.7 ± 25.9 43.7 ± 23.6 61.5 ± 35.0 161.3 ± 109.7 74.5 ± 39.3
base+smooth 114.3 ± 45.0 179.3 ± 70.7 172.1 ± 61.1 180.3 ± 61.4 227.4 ± 85.1 188.4 ± 64.7 153.3 ± 70.7

Table 8 3D pose estimation error for the TUM kitchen dataset in mm (using full training set and 300 particles). ap: action
prior; up: uniform prior.

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap 46.9 ± 23.0 57.4 ± 28.6 59.5 ± 27.3 49.2 ± 33.8 63.2 ± 36.0 66.6 ± 32.2 74.3 ± 37.0
up 47.5 ± 24.0 56.2 ± 23.4 61.9 ± 31.6 47.8 ± 35.0 65.7 ± 41.7 67.4 ± 33.0 72.1 ± 34.6

ap+smooth 42.4 ± 22.1 52.4 ± 26.1 54.4 ± 26.1 44.6 ± 33.1 58.1 ± 35.2 63.1 ± 31.0 70.4 ± 35.9
up+smooth 43.0 ± 22.7 51.1 ± 21.3 56.5 ± 27.4 43.1 ± 34.3 60.4 ± 40.0 63.5 ± 31.9 68.1 ± 33.0

We finally remark that the pose estimation with

uniform prior already provides reliable estimates for
pose-based action recognition (0.76) that performs bet-
ter than appearance-based action recognition (0.71), al-

though there is room for further improvement to match
the performance with the “ground truth” (TUM ) poses
(0.81). This is particularly relevant for scenarios when

view- and environment-dependent training data is dif-
ficult to acquire and only MoCap training data is avail-
able.

6.5 Closing the Loop

In our system, we transition from an action label to
pose estimates and then back to actions again. One can

continue and re-estimate the pose based on the 3D pose-
based action labels; based on the re-estimated poses,
one can again solve for the action labels. In a subse-

quent iteration, the pose estimation error is reduced by
about 3% (see Table 11) and the action recognition by
1% error (using velocity features from smoothed poses,

we improve from 0.77 to 0.78). These results highlight

that for both action recognition and pose estimation,

the more accurate the information being leveraged, the
better the results.

7 Conclusion

We have presented a system for coupling the closely
intertwined tasks of action recognition and pose esti-
mation. The success of the proposed method for pose

estimation which achieves state-of-the art performance
builds on the ability to jointly optimize over several
low-dimensional spaces that represent poses of various

activities. Beyond that, unobserved pose variations or
unobserved transitions between actions are resolved by
continuing the optimization in the high-dimensional space

of all human poses. Our experiments have shown that
this combination is superior compared to optimization
in either space individually. On the one hand, the full

human pose has too many degrees of freedom to be
optimized efficiently. On the other hand, learned low-
dimensional embeddings can be poor at generalization,

such that poses which are not present in the training
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Table 9 3D pose estimation error for the TUM kitchen dataset in mm (using full training set).

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap(Isomap) 48.1 ± 22.4 58.4 ± 27.1 64.6 ± 30.4 45.8 ± 27.8 69.3 ± 39.9 68.7 ± 31.6 75.9 ± 36.5
ap(PCA) 46.3 ± 15.9 60.6 ± 35.9 65.6 ± 32.2 50.1 ± 22.3 79.2 ± 61.5 66.2 ± 29.8 74.4 ± 32.3

ap(Isomap)+smooth 43.5 ± 21.3 53.2 ± 25.7 59.2 ± 28.8 41.0 ± 26.7 63.8 ± 38.5 64.8 ± 30.8 71.6 ± 35.2
ap(PCA)+smooth 41.9 ± 14.7 55.7 ± 34.0 60.7 ± 30.6 45.5 ± 20.4 74.4 ± 60.7 62.6 ± 28.9 70.7 ± 30.8

Table 10 Action recognition performance for different relational pose features extracted from the ground truth, action prior,
uniform prior and baseline pose estimates. For the action prior, uniform prior and baseline, we report two values to indicate
the effects of smoothing on the action recognition performance (unsmoothed/smoothed). TUM: ground truth; ap: action prior;
up: uniform prior; base: baseline.

S1 training set full training set

particles joint dist. plane velocity combined joint dist. plane velocity combined

TUM - 0.59 0.68 0.68 0.70 0.76 0.79 0.81 0.81

ap 200 0.55/0.54 0.56/0.57 0.31/0.54 0.54/0.57 0.67/0.67 0.70/0.68 0.46/0.73 0.73/0.74
up 200 0.52/0.52 0.51/0.50 0.30/0.49 0.54/0.55 0.67/0.65 0.64/0.62 0.41/0.68 0.66/0.68
base 200 0.19/0.19 0.20/0.20 0.13/0.23 0.25/0.24 0.28/0.28 0.27/0.27 0.21/0.36 0.29/0.28

ap 300 0.68/0.68 0.72/0.72 0.52/0.77 0.75/0.75
up 300 0.69/0.69 0.71/0.69 0.52/0.76 0.73/0.73

Table 11 3D pose estimation error for the TUM kitchen dataset in mm (using full training set and 300 particles). ap(2D):
action prior from 2D action recognition (Table 1); ap(3D): action prior from 3D action recognition (Table 10).

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap(2D) 46.9 ± 23.0 57.4 ± 28.6 59.5 ± 27.3 49.2 ± 33.8 63.2 ± 36.0 66.6 ± 32.2 74.3 ± 37.0
ap(3D) 44.1 ± 15.7 58.7 ± 26.7 58.3 ± 23.9 46.6 ± 31.5 61.0 ± 30.0 68.1 ± 34.8 68.5 ± 31.1

ap(2D)+smooth 42.4 ± 22.1 52.4 ± 26.1 54.4 ± 26.1 44.6 ± 33.1 58.1 ± 35.2 63.1 ± 31.0 70.4 ± 35.9
ap(3D)+smooth 39.3 ± 13.9 53.7 ± 24.9 53.0 ± 21.9 42.0 ± 30.6 55.8 ± 28.6 64.4 ± 34.0 64.6 ± 29.9

data can not be well estimated. The proposed method
benefits from the efficiency of low-dimensional embed-

dings but also overcomes the problem of generalization.
Our experiments have also shown that an action prior
improves the pose estimation when the number of par-

ticles for optimization are limited. The benefit of the
action prior compared to a uniform prior, however, be-
comes smaller with an increasing number of particles.

Within our proposed action recognition system, 3D

pose-based features have been shown to be more suc-
cessful at classifying the actions than 2D appearance-
based features. The same has been shown to be true

even when the pose-based features were extracted from
the estimated poses of our pose estimation system, in-
dicating that the quality of estimated poses with an

average error between 42mm-70mm is sufficient enough
for reliable action recognition. Since 3D pose-based fea-
tures are, in contrast to 2D appearance features, view-

independent, it is easier to acquire training data from
other datasets. In this way, the pose estimation sys-
tem with a uniform prior and the pose-based action

recognition method can be easily set-up at any loca-

tion without requiring additional view-specific training
data.

In our system, we have shown the advantages of us-

ing action recognition for pose estimation and the ad-
vantages of using pose estimation for action recognition.
The selection of priors for pose estimation, be it the ac-

tion prior or the uniform prior, is related to the amount
of computational resources available at hand, i.e. the
number of particles to be used and hence the amount

of time required for the pose estimation algorithm. The
less the resources, the more benefit there is to be gained
from using action information, e.g. at 200 particles, the

action prior outperforms the uniform prior. With more
resources, e.g. at 300 particles, differences between the
action prior and the uniform prior are no longer dis-

tinguishable. Given unlimited resources, however, even
the baseline algorithm which does not make use of any
action information is expected to perform reasonably

well. Performance of the pose-based action recognition,
while tolerant of errors, is directly related to the pose
accuracy. As such, we envision two possible settings to

use the current system. If one has more computational
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Fig. 12 Confusion matrix for the 3D pose-based action
recognition using the full training set with velocity features
extracted from smoothed pose estimates, estimated with 300
particles.

resources for pose estimation, then it is preferable to
use the uniform prior and bypass the initial 2D action

recognition stage, since the benefits of the action prior
for pose estimation is no longer distinguishable from
the uniform prior. On the other hand, with more lim-

ited resources and a focus on pose estimation, it is more
preferable to keep the 2D action recognition to improve
the accuracy of the pose estimates.

To advance vision-based human motion analysis be-

yond isolated actions and poses, one should integrate
contextual information, either from the environment or
objects. Environmental context, e.g. the type of scene

or even specific locations within a scene can provide
strong indicators to the types of actions and therefore
poses which can be expected. Furthermore, interactions

with objects can often be the defining characteristic of
an action and having a better understanding of human-
object interactions would lead to improved recognition

on high-level actions such as “take object” or “release
grasp”. Future work will be focused on methods of en-
coding the contextual information so that it can be ef-

ficiently integrated into coupled action recognition and
pose estimation systems.

Acknowledgements This work has been supported by fund-
ing from the Swiss National Foundation NCCR project IM2
as well as the EC projects IURO, TANGO and RADHAR.
Angela Yao was also supported by funding from NSERC
Canada.

References

1. Agarwal, A., Triggs, B.: Recovering 3d human pose from
monocular images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 28(1), 44–58 (2006)

2. Aggarwal, J., Ryoo, M.: Human activity analysis: A re-
view. ACM Computing Surveys (2010)

3. Ali, S., Basharat, A., Shah, M.: Chaotic invariants for
human action recognition. In: Proceedings International
Conference on Computer Vision (2007)

4. Andriluka, M., Roth, S., Schiele, B.: Monocular 3d pose
estimation and tracking by detection. In: Proceed-
ings IEEE Conference on Computer Vision and Pattern
Recognition (2010)

5. Baak, A., Rosenhahn, B., Mueller, M., Seidel, H.P.: Sta-
bilizing motion tracking using retrieved motion priors.
In: Proceedings International Conference on Computer
Vision (2009)

6. Baumberg, A., Hogg, D.: An efficient method for contour
tracking using active shape models. In: In Proceeding
of the Workshop on Motion of Nonrigid and Articulated
Objects. IEEE Computer Society (1994)

7. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spec-
tral techniques for embedding and clustering. In: Neural
Information Processing Systems (2002)

8. Bergtholdt, M., Kappes, J., Schmidt, S., Schnörr, C.: A
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Fig. 13 Cropped images and pose estimates for the actions of TUM kitchen dataset, shown for cameras 1 and 3; Close
cupboard and close drawer are not shown.


