SEMI-GENERATIVE MODELLING: **COVARIATE-SHIFT ADAPTATION WITH** CAUSE AND EFFECT FEATURES

JULIUS VON KÜGELGEN, ALEXANDER MEY, MARCO LOOG

OBJECTIVE

Improving an adapted model with unlabelled data when labelled data is scarce, that is, combining covariate-shift (CS) adaptation and semi-supervised learning (SSL):

BACKGROUND

CAUSAL AND ANTICAUSAL LEARNING [2]

For many learning settings it matters whether a feature *X* is a cause or an effect of a target *Y*!

- **1. Causal Learning:** $X \to Y$
 - P(X) and P(Y|X) are independent, i.e. share no information
 - Covariate shift holds: changes in P(X)should have no effect on P(Y|X)
 - SSL impossible: P(X) does not contain information about P(Y|X)
- **2.** Anticausal Learning: $Y \rightarrow X$
 - P(Y) and P(X|Y) are independent, but P(X) and P(Y|X) are dependent
 - Covariate shift does not hold: changes in P(X) can have an effect on P(Y|X)
 - SSL possible: P(X) contains information about P(Y|X)

- CS assumption: P(X) changes, but P(Y|X) remains domain invariant.
- Current CS approaches use unlabelled data for importance reweighting [3, 5] or learning domain-invariant features [1].
- Classifier is trained on labelled data only.
- When amount of labelled data is the bottleneck, also use unlabelled data for SSL.
- Combining CS and SSL requires learning with both cause and effect features [2, 4].

PROBLEM SETTING

Given:

• small labelled source-domain (D = 0)sample, $(x_{C}^{i}, y^{i}, x_{E}^{i}) \sim P(X_{C}, Y, X_{E}|D =$ (0)

SEMI-GENERATIVE MODELLING APPROACH

Main Idea: Condition on causal features, but explicitly model the distribution of effect features.

Discriminative Model	Semi-Generative Model	Generative Model
$P(Y X_C, X_E, \theta)$	$P(Y, X_E X_C, \theta)$	$P(X_C, Y, X_E D, \theta)$
domain-invariant	domain-invariant	not domain-invariant
cannot use unlabelled data (x_C, x_E) for SSL	can use unlabelled data (x_C, x_E) for SSL	can use unlabelled data (x_C, x_E) for SSL

Supervised source-domain log-likelihood:

$$\ell_S(\theta) = \frac{1}{n_S} \sum_{i=1}^{n_S} \left(\log P(y^i | x_C^i, \theta) + \log P(x_E^i | y^i, \theta) \right)$$

Unsupervised target-domain log-likelihood:

$$\ell_T(\theta) = \frac{1}{n_T} \sum_{n_T}^{n_S + n_T} \log\left(\sum_{C} P(y|x_C^j, \theta) P(x_E^j|y, \theta)\right)$$

Factorisation of semi-generative model:

• large unlabelled target-domain (D = 1)sample, $(x_{C}^{j}, x_{E}^{j}) \sim P(X_{C}, X_{E} | D = 1)$

Goal:

• minimise expected target-domain loss, $\mathbb{E}_{P(X_C,Y,X_E|D=1)}\left[L(\hat{Y}(X_C,X_E),Y)\right]$

Assumption:

• underlying structural causal model is known to be of the form (see Figure 1):

> $X_C := f_C(D, N_C)$ $Y := f_Y(X_C, N_Y)$ $X_E := f_E(Y, N_E)$

FUTURE WORK

- Relax assumptions to the more general setting by allowing $X_C \to X_E$.
- Incorporate common assumptions such as clustering or low density separation

 $j = n_S + 1$ $y \in \mathcal{Y}$

Interpolated pooled log-likelihood with $\lambda \in (0, 1)$:

 $\ell_P^{\lambda}(\theta) = \lambda \,\ell_S(\theta) + (1 - \lambda) \,\ell_T(\theta)$

Figure 1: SSL by learning a noisy composition of f_Y and f_E from unlabelled data (x_C, x_E) .

 N_Y

 (N_E)

n_T

 $[N_C]$

RESULTS ON SYNTHETIC CLASSIFICATION DATA

- $\theta_S = \arg \max_{\theta} \ell_S(\theta)$, supervised baseline
- $\theta_P^{\lambda} = \arg \max_{\theta} \ell_P^{\lambda}(\theta)$, pooled estimator
- θ_{WS} , importance-weighted form of θ_S [3]
- θ_{LR} , logistic-regression on (X_C, X_E)

Figure 2: Results for $n_S = 8$ labelled examples using $\lambda = \frac{n_S}{n_S + n_T}$ for $\mu = 0.5$ (left), and $\mu = 2$ (right), where μ determines the amount of information X_E carries about $Y: X_E | (Y = \pm 1) \sim \mathcal{N}(\pm \mu, 1)$.

REFERENCES

- [1] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks. *The Journal of Machine Learning Research*, 17(1):2096–2030, 2016.
- B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and anticausal learning. In Proceedings of the 29th [2] International Conference on Machine Learning, 2012.
- H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of statistical planning and inference, 90(2):227-244, 2000.
- [4] A. Storkey. When training and test sets are different: characterizing learning transfer. *Dataset shift in machine learning*, 2009.
- [5] M. Sugiyama, M. Krauledat, and K.-R. Müller. Covariate shift adaptation by importance weighted cross validation. *Journal of Machine* Learning Research, 8(May):985–1005, 2007.