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1 Notation

We summarize the notation used in the main paper in Table 1.

Symbol Description

X Observation domain of a single image region.
Y = {1, . . . , C} Set of region labels.
X = {X1, . . . , XW } Set of observation variables.
Y = {Y1, . . . , YV } Set of label variables.
F ⊆ 2V × 2W Set of all factors.
T = {1, . . . , |T |} Set of factor types.
t(F ) ∈ T Factor type of factor F .

µF ∈ {0, 1}Y
F

Overcomplete representation of yF .

θ
t(F )
F (xF , wt(F )) ∈ RY

F

Feature function defining the energies for all possi-
ble labelings yF ∈ YF within the factor F of type
t(F ).

Ha
F : XF → RDa Image feature a extracted from the set of image re-

gions belonging to F .

Table 1. Notation used to describe factor graphs.

2 Image Features

SIFT. We extract color image descriptors using the implementation of van de
Sande [1]. In particular, we use the WSIFT descriptors extracted on a regular
grid of sizes 6, 10, 20, and 40 pixels. From the set of descriptors of the training
images, we subsample 250,000 descriptors and k-means cluster them into 512
codewords. Each region is then assigned a 512-bin L1-normalized bag-of-words
histogram of its feature points.
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QPHOG Features. For each image region in the segmentation tree we find the
tightest bounding box around the region. We create a binary segmentation mask
within the bounding box by assigning each pixel within the region a value of
one and each pixel outside the region a value of zero. We rescale the resulting
black-and-white image to a fixed size of 96-by-96 pixels and extract pyramid his-
togram of oriented gradients (PHOG) features using the VGG implementation4

in eight 360-degree-orientation bins and three pyramid levels producing a 680-
dimensional feature fi for each region i. This feature faithfully encodes the shape
of the region. In order to match this shape to some suitable template shapes,
the features of all regions in all segmentation trainval images are clustered using
k-means with k = 512 to obtain cluster centers u1, . . . , u512. A new “QHOG”
feature qi ∈ R512 is defined for each region i by qi,j = K(uj , fi;σPHOG), where
K is a standard Gaussian RBF kernel and we choose σPHOG such that the mean
response over all regions in all images is approximately 0.1.

QHOG Features. The QHOG features are constructed by taking the smallest
bounding box containing an image region and extracting a grid of 7-by-7 HOG
blocks from the image content using the HOG implementation of Felzenszwalb.5

All ≈ 230k descriptors of the training set are clustered using k-means into 512
codewords and processed as for the QPHOG features.

3 Details regarding Max-Margin Learning

The structured SVM algorithm finds a solution to the following convex6 non-
differentiable optimization problem.

min
w
‖w‖2 +

Csvm

N

N∑
n=1

max
y∈YV

(∆(yn,y) (1)

+E(yn;xn,w)− E(y;xn,w)),

where ∆(yn,y) is usually assumed to be a semi-metric on YV , the set of possible
labelings. Intuitively, the objective (1) can be understood as minimizing the en-
ergy E(yn;xn,w) assigned to true labeling yn and at the same time maximizing
the energy assigned to all other labelings, thus maximizing the margin of the
predictor. A larger difference of a labeling to the ground truth, as determined
by ∆(yn,y) leads to a larger enforced margin.

The use of (1) entails the choice of the function ∆(yn,y), the parameter
Csvm, and a method to solve (1). For ∆ : YV × YV → R+ we choose the same
function as [2], with ∆(y1,y2) =

∑
i∈V si

∑
c∈Y(µ1

i (c) + µ2
i (c) − 2µ1

i (c)µ
2
i (c)),

where µ1 and µ2 correspond to the overcomplete representation of y1 and y2,

4 http://www.robots.ox.ac.uk/∼vgg/research/caltech/phog.html
5 http://people.cs.uchicago.edu/∼pff/latent/
6 Convexity is easily proven as E(y; xn, w) is a linear function in w and thus

maxy∈YV E(y; xn, w) is convex by construction.
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respectively. The scalar weighting constant si ≥ 0 is the relative image-plane
size (si = ri/(

∑
j∈V rj), where rj is the number of pixels in the j’th region).

Thus we give a larger influence to larger regions in the image, something that is
not possible in the standard CMLE training method.

Unlike in the intractable general case [3] we can always perform exact MAP
labeling for our model for all settings of w. Hence, in principle we can also
optimize (1) exactly. However, in our case where w contains many parameters
and Csvm is large the usual cutting plane training procedure [4] leads to very
large quadratic programming problems, eventually exhausting available memory;
this is true despite pruning inactive constraints in each iteration. Hence we could
only evaluate small values of Csvm. The performance was always improving as we
increased Csvm, suggesting that current training methods need to be improved
to benefit from the formulation (1).

4 VOC2009 Challenge Evaluation

We have trained one version of our model using the SIFT, QHOG, QPHOG,
and STF features and the data-independent pairwise potential on the entire
segmentation training and validation set (1499 images) and submitted it to the
VOC2009 evaluation server.

The official results from the recent VOC2009 challenge and the results from
our model are shown in Table 2. Note that a key distinction must be made
between models trained on the segmentation set only (seg, 1499 images) and
models trained on both the detection and segmentation sets (cls+seg, 7054+1499
images), as the latter have an almost six times larger set of training images.

The BONN SVM-SEGM method, which has been trained on the segmenta-
tion images only achieves a high performance of 36.3% on the official evaluation
measure. It has recently be described in a pair of papers [5, 6] and works by first
producing a set of segments as object hypotheses that are then ranked using a
learned regression function. The fact that BONN SVM-SEGM method is not a
multi-class random field model, but instead classifies individual image segments
from figure ground segmentations indicates that the general random field model
could possibly be improved by hierarchical, higher-order factors, a direction that
was recently considered by Ladický et al. [7].
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Submission name Accuracy Trained on

CVC HOCRF 34.5% cls+seg
NECUIUC CLS-DTCT 29.7% cls+seg
UoCTTI LSVM-MDPM 29.0% cls+seg
NECUIUC SEG 28.3% cls+seg
LEAR SEGDET 25.7% cls+seg
UCI LAYEREDSHAPE 24.7% cls+seg
BROOKESMSRC AHCRF 24.8% ?
UC3M GEN-DIS 14.5% ?

BONN SVM-SEGM 36.3% seg
UCLA SUPERPIXELCRF 13.8% seg

our model 15.5% seg

Table 2. VOC 2009 segmentation results on the test set.
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