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Probabilistic numerics

Artificial intelligent systems build models of
their environment from observations, and choose
actions that they predict will have beneficial ef-
fect on the environment’s state. The mathemati-
cal models used in this process call for computa-
tions that have no closed analytic solution. Learn-
ing machines thus rely on a whole toolbox of nu-
merical methods: high-dimensional integration
routines are used for marginalization and condi-
tioning in probabilistic models. Fitting of param-
eters poses nonlinear (often non-convex) opti-
mization problems. Predicting dynamic changes
in the environment involves solving differential
equations. In addition, there are special cases
for each of these tasks in which the computa-
tion amounts to large-scale linear algebra (i.e.
Gaussian conditioning, least-squares optimiza-
tion, linear differential equations). Traditionally,
machine learning researchers have served these
needs by taking numerical methods “off the shelf”
and treating them as black boxes.

Since the 1970s, researchers like Wahba, Dia-
conis, and O’Hagan repeatedly pointed out that,
in fact, numerical methods can themselves be in-
terpreted as statistical rules—more precisely, as
acting machines, since they take decisions about
which computations to perform: they estimate
an unknown intractable quantity given known,
tractable quantities. For example, an integration
method estimates the value of an integral given
evaluations of the integrand. This is an abstract
observation, but Diaconis and O’Hagan sepa-
rately made a precise connection between infer-
ence and computation in the case of integration:
several classic quadrature rules, e.g. the trape-
zoid rule, can be interpreted as the maximum a
posteriori (MAP) estimator arising from a family
of Gaussian process priors on the integrand.

Over recent years, the research group on prob-
abilistic numerics has been able to add more

such bridges between computation and inference
across the domains of numerical computation, by
showing that various basic numerical methods
are MAP estimates under equally basic proba-
bilistic priors: quasi-Newton methods, such as
the BFGS rule, arise as the mean of a Gaus-
sian distribution over the elements of the inverse
Hessian matrix of an optimization objective [91,
406, 448]. This result can be extended to linear
solvers [49], in particular the linear method of
conjugate gradients (Gaussian regression on the
elements of the inverse of a symmetric matrix).
Regarding ordinary differential equations, some
Runge-Kutta methods can be interpreted as au-
toregressive filters [397], returning a Gaussian
process posterior over the solution of a differen-
tial equation.

The picture emerging from these connections
is a mathematically precise description of com-
putation as the active collection of information.
In this view, the analytic description of a numeri-
cal task provides a prior probability measure over
possible solutions, which can be concentrated
through conditioning on the result of tractable
computations. Many concepts and philosophical
problems from statistics carry over to computa-
tion quite naturally, with two notable differences:
first, in numerical “inference” tasks, the valid-
ity of the prior can be analyzed to a higher for-
mal degree than in inference from physical data
sources, because the task is specified in a for-
mal (programming) language. Secondly, since
numerical routines are the bottom, “inner loop”
layer of artificial intelligence, they must curtail
computational complexity. This translates into a
constraint on acceptable probabilistic models—
most basic numerical methods make Gaussian
assumptions.

In the machine learning context, the descrip-
tion of computation as the collection of informa-
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tion has opened a number of research directions:
(1) Once it is clear that a numerical method

uses an implicit prior, it is natural to adapt this
prior to reflect available knowledge about the
integrand. This design of “customized numerics”
was used in a collaboration with colleagues at
Oxford to build an efficient active integration
method that outperforms Monte Carlo integra-
tion methods in wall-clock time on problems of
moderate dimensionality [396].

(2) Many numerical problems are defined rel-
ative to a setup that is itself uncertain to be-
gin with. Once numerical methods are defined
as probabilistic inference, such uncertainty can
often be captured quite naturally. In a collabo-
ration with colleagues in Copenhagen, it was
shown [354, 369, 399] how uncertainty arising
from a medical imaging process can be prop-
agated in an approximate inference fashion to
more completely model uncertainty over neural
pathways in the human brain.

(3) Explicit representations of uncertainty can
also be used to increase robustness of a com-
putation itself. Addressing a pertinent issue in
deep learning, we constructed a line search
method [321]—a building block of nonlinear
optimization methods—that is able to use gradi-
ent evaluations corrupted by noise. The result-
ing method automatically adapts step sizes for
stochastic gradient descent.

(4) More generally, it is possible to define
probabilistic numerical methods: Algorithms

that accept probability measures over a numeri-
cal problem as inputs, and return another proba-
bility measure over the solution of the problem,
which reflects both the effect of the input un-
certainty, and uncertainty arising from the finite
precision of the internal computation itself. A
position paper [37] motivates this class of algo-
rithms, and suggests their use for the control of
computational effort across composite chains of
computations, such as those that make up intel-
ligent machines. In collaboration with the Opti-
mization group at the German Cancer Research
Center we developed approximations to propa-
gate physical uncertainties through the optimiza-
tion pipeline for radiation treatment, to lower the
risk of complications for patients [111, 437].

In a separate but related development, a com-
munity has also arisen around the formulation of
global optimization as inference, and the formu-
lation of sample-efficient optimization methods.
These Bayesian Optimization methods can, for
example, be used to structurally optimize and
automate the design of machine learning models
themselves. We contributed to this area with the
development of the Entropy Search [135] algo-
rithm that automatically performs experiments
expected to provide maximal information about
the location of a function’s extremum.

Probabilistic numerics is emerging as a new
area at the intersection of mathematics, computer
science and statistics. As co-founders, the re-
search group on probabilistic numerics plays
a central role in its development. The wider
Intelligent Systems community, with their in-
tractably large data streams and non-analytic
model classes, are simultaneously contributors
and beneficiaries: equipping computational rou-
tines with a meaningful notion of uncertainty
stands to increase both the efficiency and relia-
bility of intelligent systems at large.

More information: https://ei.is.tuebingen.mpg.de/project/probabilistic-numerics
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