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Reinforcement learning

Figure 1.14: Ball-in-a-cup was learned with the EM-like policy search approach called PoWER [178].

Reinforcement learning ranks among the
biggest challenges for machine learning. Just
controlling a known dynamical system is hard
on its own – interacting with an unknown system
poses even harder decision problems, such as the
infamous exploration-exploitation tradeoff. Most
research in this area is still confined to theoreti-
cal analysis and simplistic experiments, but the
promise of autonomous machines justifies the
effort. Over the past years, members of the de-
partment contributed to reinforcement learning
in theory and experiment.

Non-Parametric Dynamic Programming
[530] showed that a non-parametric kernel den-
sity representation of system dynamics unifies
several popular policy evaluation methods: their
Galerkin method joins Least-Squares Temporal
Difference learning, Kernelized Temporal Dif-
ference learning, and a type of discrete-state Dy-
namic Programming, as well as a novel method
of improved performance.

EM-like Reinforcement Learning Policy
search, a successful approach to reinforcement
learning, directly maximizes the expected return
of a policy – in contrast to value function ap-
proximation, which derives policies from a learnt
value function. However, few of its variants scale
to many dimensions, as they are based on gra-
dient descent over many trials. To improve ef-
ficiency, [178] reduced the problem to reward-
weighted imitation, treating rewards received af-

ter actions as improper probabilities indicating
the actions’ success. Their idea resembles Ex-
pectation Maximization, giving good actions a
higher probability to be re-used. This framework
also unifies previous algorithms, and allows the
derivation of novel ones, such as episodic reward-
weighted regression and PoWER.

Relative Entropy Policy Search Policy im-
provements in policy search often invalidate
previously collected information, causing pre-
mature convergence and implausible solutions.
These problems may be addressed by constrain-
ing the information loss. Relative Entropy Pol-
icy Search (REPS) bounds the information loss
while maximizing expected return [586]. REPS
differs significantly from previous policy gradi-
ent approaches. It yields an exact update shown
to work well on reinforcement learning bench-
marks. REPS can be generalized hierarchically
[455] using a gating network to choose among
several option policies. This hierarchical REPS
learns versatile solutions while increasing learn-
ing speed and the quality of the learnt policy.

Bayesian reinforcement learning Probabil-
ity theory gives a uniquely coherent answer to
the exploration-exploitation dilemma: From the
Bayesian perspective, reinforcement learning is
about including possible future observations in
considerations about optimal behavior. Since
probabilistic models can predict future data, this
process can be rigorously formalized. It amounts
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to modeling knowledge as an additional dynamic
variable to be controlled. In general, the combi-
natorial number of possible futures is intractable;
however, [540] showed that the Gaussian process
(GP) framework, in which predictions involve
linear algebra calculations, allows approximat-
ing optimal exploration-exploitation with classic
numerical methods for the solution of stochastic
differential equations.

Reinforcement learning with Gaussian
Processes: [279] used GPs for approximate dy-
namic programming in reinforcement learning,
as probabilistic function approximators for the
value function, and as models of the system
dynamics. Using the predictive uncertainty for
guidance, active learning methods could explore
the state space efficiently. [555] proposed a par-
ticularly efficient use of GPs for optimal control
over continuous states for non-bifurcating sys-
tems with low sampling rate. In their work, GPs
capture information gained, as well as remaining
uncertainty due to noise and lack of experience.
The system’s behavior is predicted by propagat-
ing state and action distributions through time,
tractability is achieved approximating distribu-
tions by moment matched Gaussians. This “vir-
tual simulation” is used to optimize the control
policy. Their algorithms learn from even lim-
ited interactions with the environment due to the
power of using probabilistic forward models for
such indirect experience rehearsal.

Apprenticeship learning via inverse rein-
forcement learning Unguided exploration can
be hazardous for systems like robots. This issue
is addressed by imitation learning from exam-
ple actions provided by an expert, where the au-
tonomous agent learns a policy generalizing the
demonstrations to new states. This behavioral
cloning may fail when the dynamics of expert
and learner differ. Indeed, even simple repeti-
tion of the expert’s actions does not always yield
the same results. An alternative is to infer the
expert’s reward function from the expert’s be-

havior, then use it to learn in the new system.
This avoids exhaustive exploration by searching
for policies close to the expert’s. Previous work
required a model of the expert’s dynamics, but
[508] presented a model-free inverse reinforce-
ment learning algorithm, using importance sam-
pling to adapt expert examples to the learner’s
dynamics. Tested on several benchmarks, the al-
gorithm proved more efficient than the state of
the art. Generalization in both forward and in-
verse reinforcement learning depends on the pro-
jection of states onto features to describe reward
and value function. Features, especially visual
ones, are often subject to noise, for example in
robot grasping and manipulation tasks. To solve
this problem, [463] combined control and struc-
tured output prediction over Markov Random
Fields to represent the action distribution. Their
method is robust to noise in a grasping task, and
can also be used in other applications requiring
control from vision.

Data-dependent Analysis of Reinforce-
ment Learning Many analyses of reinforce-
ment learning focus on worst-case scenarios,
although reality is often not adversarial. [536]
used PAC-Bayesian inequalities for martingales
in a data-dependent analysis of the exploration-
exploitation trade-off [138]. We studied stochas-
tic multi-armed bandits with side information
(also known as contextual bandits), a general
framework where at each round of the game the
agent is presented with side information (e.g.,
symptoms of a patient in a medical application)
and has to find the best action (e.g., the best drug
to prescribe given the symptoms). This model
class is also used for personalized advertising
on the internet. Our analysis includes the ac-
tual usage of side information by the algorithm,
rather than the total amount of side information
provided. This allows offering a lot of side infor-
mation and letting the algorithm decide what is
relevant, improving the run time of the algorithm
exponentially over the state of the art.

More information: https://ei.is.tuebingen.mpg.de/project/reinforcement-learning
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