Header logo is ei


2001


no image
Extracting egomotion from optic flow: limits of accuracy and neural matched filters

Dahmen, H-J., Franz, MO., Krapp, HG.

In pages: 143-168, Springer, Berlin, 2001 (inbook)

[BibTex]

2001

[BibTex]


no image
Bound on the Leave-One-Out Error for Density Support Estimation using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Smola, A., Rayner, P.

University of Cambridge, 2001 (techreport)

[BibTex]

[BibTex]


no image
The pedestal effect with a pulse train and its constituent sinusoids

Henning, G., Wichmann, F., Bird, C.

Twenty-Sixth Annual Interdisciplinary Conference, 2001 (poster)

Abstract
Curves showing "threshold" contrast for detecting a signal grating as a function of the contrast of a masking grating of the same orientation, spatial frequency, and phase show a characteristic improvement in performance at masker contrasts near the contrast threshold of the unmasked signal. Depending on the percentage of correct responses used to define the threshold, the best performance can be as much as a factor of three better than the unmasked threshold obtained in the absence of any masking grating. The result is called the pedestal effect (sometimes, the dipper function). We used a 2AFC procedure to measure the effect with harmonically related sinusoids ranging from 2 to 16 c/deg - all with maskers of the same orientation, spatial frequency and phase - and with masker contrasts ranging from 0 to 50%. The curves for different spatial frequencies are identical if both the vertical axis (showing the threshold signal contrast) and the horizontal axis (showing the masker contrast) are scaled by the threshold contrast of the signal obtained with no masker. Further, a pulse train with a fundamental frequency of 2 c/deg produces a curve that is indistinguishable from that of a 2-c/deg sinusoid despite the fact that at higher masker contrasts, the pulse train contains at least 8 components all of them equally detectable. The effect of adding 1-D spatial noise is also discussed.

[BibTex]

[BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Unsupervised Sequence Segmentation by a Mixture of Switching Variable Memory Markov Sources

Seldin, Y., Bejerano, G., Tishby, N.

In In the proceeding of the 18th International Conference on Machine Learning (ICML 2001), pages: 513-520, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Abstract
We present a novel information theoretic algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees (Ron et al., 1996) using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The algorithm seems to be self regulated and automatically avoids over segmentation. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families, we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to important functional sub-units called domains.

PDF [BibTex]

PDF [BibTex]


no image
The control structure of artificial creatures

Zhou, D., Dai, R.

Artificial Life and Robotics, 5(3), 2001, invited article (article)

Web [BibTex]

Web [BibTex]


no image
Support Vector Regression for Black-Box System Identification

Gretton, A., Doucet, A., Herbrich, R., Rayner, P., Schölkopf, B.

In 11th IEEE Workshop on Statistical Signal Processing, pages: 341-344, IEEE Signal Processing Society, Piscataway, NY, USA, 11th IEEE Workshop on Statistical Signal Processing, 2001 (inproceedings)

Abstract
In this paper, we demonstrate the use of support vector regression (SVR) techniques for black-box system identification. These methods derive from statistical learning theory, and are of great theoretical and practical interest. We briefly describe the theory underpinning SVR, and compare support vector methods with other approaches using radial basis networks. Finally, we apply SVR to modeling the behaviour of a hydraulic robot arm, and show that SVR improves on previously published results.

PostScript [BibTex]

PostScript [BibTex]


no image
Bound on the Leave-One-Out Error for 2-Class Classification using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Rayner, P.

University of Cambridge, 2001, Updated May 2003 (literature review expanded) (techreport)

Abstract
Three estimates of the leave-one-out error for $nu$-support vector (SV) machine binary classifiers are presented. Two of the estimates are based on the geometrical concept of the {em span}, which was introduced in the context of bounding the leave-one-out error for $C$-SV machine binary classifiers, while the third is based on optimisation over the criterion used to train the $nu$-support vector classifier. It is shown that the estimates presented herein provide informative and efficient approximations of the generalisation behaviour, in both a toy example and benchmark data sets. The proof strategies in the $nu$-SV context are also compared with those used to derive leave-one-out error estimates in the $C$-SV case.

PostScript [BibTex]

PostScript [BibTex]


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

Web [BibTex]

Web [BibTex]


no image
Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

Cheng, Y., Fu, Q., Gu, L., Li, S., Schölkopf, B., Zhang, H.

In Proceedings Computer Vision, 2001, Vol. 2, pages: 674-679, IEEE Computer Society, 8th International Conference on Computer Vision (ICCV), 2001 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Some kernels for structured data

Bartlett, P., Schölkopf, B.

Biowulf Technologies, 2001 (techreport)

[BibTex]

[BibTex]


no image
Modeling the Dynamics of Individual Neurons of the Stomatogastric Networks with Support Vector Machines

Frontzek, T., Gutzen, C., Lal, TN., Heinzel, H-G., Eckmiller, R., Böhm, H.

Abstract Proceedings of the 6th International Congress of Neuroethology (ICN'2001) Bonn, abstract 404, 2001 (poster)

Abstract
In small rhythmic active networks timing of individual neurons is crucial for generating different spatial-temporal motor patterns. Switching of one neuron between different rhythms can cause transition between behavioral modes. In order to understand the dynamics of rhythmically active neurons we analyzed the oscillatory membranpotential of a pacemaker neuron and used different neural network models to predict dynamics of its time series. In a first step we have trained conventional RBF networks and Support Vector Machines (SVMs) using gaussian kernels with intracellulary recordings of the pyloric dilatator neuron in the Australian crayfish, Cherax destructor albidus. As a rule SVMs were able to learn the nonlinear dynamics of pyloric neurons faster (e.g. 15s) than RBF networks (e.g. 309s) under the same hardware conditions. After training SVMs performed a better iterated one-step-ahead prediction of time series in the pyloric dilatator neuron with regard to test error and error sum. The test error decreased with increasing number of support vectors. The best SVM used 196 support vectors and produced a test error of 0.04622 as opposed to the best RBF with 0.07295 using 26 RBF-neurons. In pacemaker neuron PD the timepoint at which the membranpotential will cross threshold for generation of its oscillatory peak is most important for determination of the test error. Interestingly SVMs are especially better in predicting this important part of the membranpotential which is superimposed by various synaptic inputs, which drive the membranpotential to its threshold.

[BibTex]

[BibTex]


no image
Support Vector Machines: Theorie und Anwendung auf Prädiktion epileptischer Anfälle auf der Basis von EEG-Daten

Lal, TN.

Biologische Kybernetik, Institut für Angewandte Mathematik, Universität Bonn, 2001, Advised by Prof. Dr. S. Albeverio (diplomathesis)

ZIP [BibTex]

ZIP [BibTex]

1995


no image
View-based cognitive map learning by an autonomous robot

Mallot, H., Bülthoff, H., Georg, P., Schölkopf, B., Yasuhara, K.

In Proceedings International Conference on Artificial Neural Networks, vol. 2, pages: 381-386, (Editors: Fogelman-Soulié, F.), EC2, Paris, France, Conférence Internationale sur les Réseaux de Neurones Artificiels (ICANN '95), October 1995 (inproceedings)

Abstract
This paper presents a view-based approach to map learning and navigation in mazes. By means of graph theory we have shown that the view-graph is a sufficient representation for map behaviour such as path planning. A neural network for unsupervised learning of the view-graph from sequences of views is constructed. We use a modified Kohonen (1988) learning rule that transforms temporal sequence (rather than featural similarity) into connectedness. In the main part of the paper, we present a robot implementation of the scheme. The results show that the proposed network is able to support map behaviour in simple environments.

PDF [BibTex]

1995

PDF [BibTex]


no image
Extracting support data for a given task

Schölkopf, B., Burges, C., Vapnik, V.

In First International Conference on Knowledge Discovery & Data Mining (KDD-95), pages: 252-257, (Editors: UM Fayyad and R Uthurusamy), AAAI Press, Menlo Park, CA, USA, August 1995 (inproceedings)

Abstract
We report a novel possibility for extracting a small subset of a data base which contains all the information necessary to solve a given classification task: using the Support Vector Algorithm to train three different types of handwritten digit classifiers, we observed that these types of classifiers construct their decision surface from strongly overlapping small (k: 4%) subsets of the data base. This finding opens up the possibiiity of compressing data bases significantly by disposing of the data which is not important for the solution of a given task. In addition, we show that the theory allows us to predict the classifier that will have the best generalization ability, based solely on performance on the training set and characteristics of the learning machines. This finding is important for cases where the amount of available data is limited.

PDF [BibTex]

PDF [BibTex]


no image
View-Based Cognitive Mapping and Path Planning

Schölkopf, B., Mallot, H.

Adaptive Behavior, 3(3):311-348, January 1995 (article)

Abstract
This article presents a scheme for learning a cognitive map of a maze from a sequence of views and movement decisions. The scheme is based on an intermediate representation called the view graph, whose nodes correspond to the views whereas the labeled edges represent the movements leading from one view to another. By means of a graph theoretical reconstruction method, the view graph is shown to carry complete information on the topological and directional structure of the maze. Path planning can be carried out directly in the view graph without actually performing this reconstruction. A neural network is presented that learns the view graph during a random exploration of the maze. It is based on an unsupervised competitive learning rule translating temporal sequence (rather than similarity) of views into connectedness in the network. The network uses its knowledge of the topological and directional structure of the maze to generate expectations about which views are likely to be encountered next, improving the view-recognition performance. Numerical simulations illustrate the network's ability for path planning and the recognition of views degraded by random noise. The results are compared to findings of behavioral neuroscience.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Suppression and creation of chaos in a periodically forced Lorenz system.

Franz, MO., Zhang, MH.

Physical Review, E 52, pages: 3558-3565, 1995 (article)

Abstract
Periodic forcing is introduced into the Lorenz model to study the effects of time-dependent forcing on the behavior of the system. Such a nonautonomous system stays dissipative and has a bounded attracting set which all trajectories finally enter. The possible kinds of attracting sets are restricted to periodic orbits and strange attractors. A large-scale survey of parameter space shows that periodic forcing has mainly three effects in the Lorenz system depending on the forcing frequency: (i) Fixed points are replaced by oscillations around them; (ii) resonant periodic orbits are created both in the stable and the chaotic region; (iii) chaos is created in the stable region near the resonance frequency and in periodic windows. A comparison to other studies shows that part of this behavior has been observed in simulations of higher truncations and real world experiments. Since very small modulations can already have a considerable effect, this suggests that periodic processes such as annual or diurnal cycles should not be omitted even in simple climate models.

[BibTex]

[BibTex]


no image
A New Method for Constructing Artificial Neural Networks

Vapnik, V., Burges, C., Schölkopf, B.

AT & T Bell Laboratories, 1995 (techreport)

[BibTex]

[BibTex]


no image
Image segmentation from motion: just the loss of high-spatial-frequency content ?

Wichmann, F., Henning, G.

Perception, 24, pages: S19, 1995 (poster)

Abstract
The human contrast sensitivity function (CSF) is bandpass for stimuli of low temporal frequency but, for moving stimuli, results in a low-pass CSF with large high spatial-frequency losses. Thus the high spatial-frequency content of images moving on the retina cannot be seen; motion perception could be facilitated by, or even be based on, the selective loss of high spatial-frequency content. 2-AFC image segmentation experiments were conducted with segmentation based on motion or on form. In the latter condition, the form difference mirrored that produced by moving stimuli. This was accomplished by generating stimulus elements which were spectrally either broadband or low-pass. For the motion used, the spectral difference between static broadband and static low-pass elements matched the spectral difference between moving and static broadband elements. On the hypothesis that segmentation from motion is based on the detection of regions devoid of high spatial-frequencies, both tasks should be similarly difficult for human observers. However, neither image segmentation (nor, incidentally, motion detection) was sensitive to the high spatial-frequency content of the stimuli. Thus changes in perceptual form produced by moving stimuli appear not to be used as a cue for image segmentation.

[BibTex]

1993


no image
Presynaptic and Postsynaptic Competition in models for the Development of Neuromuscular Connections

Rasmussen, CE., Willshaw, DJ.

Biological Cybernetics, 68, pages: 409-419, 1993 (article)

Abstract
The development of the nervous system involves in many cases interactions on a local scale rather than the execution of a fully specified genetic blueprint. The problem is to discover the nature of these interactions and the factors on which they depend. The withdrawal of polyinnervation in developing muscle is an example where such competitive interactions play an important role. We examine the possible types of competition in formal models that have plausible biological implementations. By relating the behaviour of the models to the anatomical and physiological findings we show that a model that incorporates two types of competition is superior to others. Analysis suggests that the phenomenon of intrinsic withdrawal is a side effect of the competitive mechanisms rather than a separate non-competitive feature. Full scale computer simulations have been used to confirm the capabilities of this model.

PostScript [BibTex]

1993

PostScript [BibTex]


no image
Cartesian Dynamics of Simple Molecules: X Linear Quadratomics (C∞v Symmetry).

Anderson, A., Davison, T., Nagi, N., Schlueter, S.

Spectroscopy Letters, 26, pages: 509-522, 1993 (article)

[BibTex]

[BibTex]