Header logo is ei



no image
Counterfactuals uncover the modular structure of deep generative models

Besserve, M., Mehrjou, A., Sun, R., Schölkopf, B.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

link (url) [BibTex]

link (url) [BibTex]


Towards causal generative scene models via competition of experts
Towards causal generative scene models via competition of experts

von Kügelgen*, J., Ustyuzhaninov*, I., Gehler, P., Bethge, M., Schölkopf, B.

ICLR 2020 Workshop "Causal Learning for Decision Making", April 2020, *equal contribution (conference)

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
On Mutual Information Maximization for Representation Learning

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S., Lucic, M.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Learning Algorithms, Invariances, and the Real World

Zecevic, M.

Technical University of Darmstadt, Germany, April 2020 (mastersthesis)

[BibTex]

[BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference)

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


no image
Radial and Directional Posteriors for Bayesian Deep Learning

Oh, C., Adamczewski, K., Park, M.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):5298-5305, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems

Wenk, P., Abbati, G., Osborne, M. A., Schölkopf, B., Krause, A., Bauer, S.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):6364-6371, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
DeepMAsED: evaluating the quality of metagenomic assemblies

Mineeva*, O., Rojas-Carulla*, M., Ley, R. E., Schölkopf, B. Y. N. D.

Bioinformatics, 36(10):3011-3017, Febuary 2020, *equal contribution (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Interpretable and Differentially Private Predictions

Harder, F., Bauer, M., Park, M.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):4083-4090, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Commentary on the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(9):13681-13684, AAAI Press, Febuary 2020, Sister Conference Track (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Real Time Trajectory Prediction Using Deep Conditional Generative Models
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

arXiv DOI [BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

Project Page PDF [BibTex]

Project Page PDF [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem
Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem

Zhu, J., Jitkrittum, W., Diehl, M., Schölkopf, B.

In 59th IEEE Conference on Decision and Control (CDC), 2020 (inproceedings) Accepted

[BibTex]

[BibTex]


no image
Advances in Latent Variable and Causal Models

Rubenstein, P.

University of Cambridge, UK, 2020, (Cambridge-Tuebingen-Fellowship) (phdthesis)

[BibTex]

[BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

[BibTex]

[BibTex]


no image
Causal Discovery from Heterogeneous/Nonstationary Data

Huang, B., Zhang, K., J., Z., Ramsey, J., Sanchez-Romero, R., Glymour, C., Schölkopf, B.

Journal of Machine Learning Research, 21(89):1-53, 2020 (article)

link (url) [BibTex]

link (url) [BibTex]


no image
Divide-and-Conquer Monte Carlo Tree Search for goal directed planning

Parascandolo*, G., Buesing*, L., Merel, J., Hasenclever, L., Aslanides, J., Hamrick, J. B., Heess, N., Neitz, A., Weber, T.

2020, *equal contribution (conference) Submitted

arXiv [BibTex]

arXiv [BibTex]


A machine learning route between band mapping and band structure
A machine learning route between band mapping and band structure

Xian*, R. P., Stimper*, V., Zacharias, M., Dong, S., Dendzik, M., Beaulieu, S., Schölkopf, B., Wolf, M., Rettig, L., Carbogno, C., Bauer, S., Ernstorfer, R.

2020, *equal contribution (misc)

arXiv [BibTex]

arXiv [BibTex]

2012


no image
Support Vector Machines, Support Measure Machines, and Quasar Target Selection

Muandet, K.

Center for Cosmology and Particle Physics (CCPP), New York University, December 2012 (talk)

[BibTex]

2012

[BibTex]


no image
Hilbert Space Embedding for Dirichlet Process Mixtures

Muandet, K.

NIPS Workshop on Confluence between Kernel Methods and Graphical Models, December 2012 (talk)

[BibTex]

[BibTex]


no image
Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices

Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9):2161-2174, December 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Hippocampal-Cortical Interaction during Periods of Subcortical Silence

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Nature, 491, pages: 547-553, November 2012 (article)

Abstract
Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Scalable graph kernels

Shervashidze, N.

Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Thermodynamic limits of dynamic cooling

Allahverdyan, A., Hovhannisyan, K., Janzing, D., Mahler, G.

Physical Review E, 84(4):16, October 2012 (article)

Abstract
We study dynamic cooling, where an externally driven two-level system is cooled via reservoir, a quantum system with initial canonical equilibrium state. We obtain explicitly the minimal possible temperature Tmin>0 reachable for the two-level system. The minimization goes over all unitary dynamic processes operating on the system and reservoir and over the reservoir energy spectrum. The minimal work needed to reach Tmin grows as 1/Tmin. This work cost can be significantly reduced, though, if one is satisfied by temperatures slightly above Tmin. Our results on Tmin>0 prove unattainability of the absolute zero temperature without ambiguities that surround its derivation from the entropic version of the third law. We also study cooling via a reservoir consisting of N≫1 identical spins. Here we show that Tmin∝1/N and find the maximal cooling compatible with the minimal work determined by the free energy. Finally we discuss cooling by reservoir with an initially microcanonic state and show that although a purely microcanonic state can yield the zero temperature, the unattainability is recovered when taking into account imperfections in preparing the microcanonic state.

Web DOI [BibTex]

Web DOI [BibTex]


no image
GLIDE: GPU-Based Linear Regression for Detection of Epistasis

Kam-Thong, T., Azencott, C., Cayton, L., Pütz, B., Altmann, A., Karbalai, N., Sämann, P., Schölkopf, B., Müller-Myhsok, B., Borgwardt, K.

Human Heredity, 73(4):220-236, September 2012 (article)

Abstract
Due to recent advances in genotyping technologies, mapping phenotypes to single loci in the genome has become a standard technique in statistical genetics. However, one-locus mapping fails to explain much of the phenotypic variance in complex traits. Here, we present GLIDE, which maps phenotypes to pairs of genetic loci and systematically searches for the epistatic interactions expected to reveal part of this missing heritability. GLIDE makes use of the computational power of consumer-grade graphics cards to detect such interactions via linear regression. This enabled us to conduct a systematic two-locus mapping study on seven disease data sets from the Wellcome Trust Case Control Consortium and on in-house hippocampal volume data in 6 h per data set, while current single CPU-based approaches require more than a year’s time to complete the same task.

Web [BibTex]

Web [BibTex]


no image
Fast projection onto mixed-norm balls with applications

Sra, S.

Minining and Knowledge Discovery (DMKD), 25(2):358-377, September 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Bayesian estimation of free energies from equilibrium simulations

Habeck, M.

Physical Review Letters, 109(10):5, September 2012 (article)

Abstract
Free energy calculations are an important tool in statistical physics and biomolecular simulation. This Letter outlines a Bayesian method to estimate free energies from equilibrium Monte Carlo simulations. A Gibbs sampler is developed that allows efficient sampling of free energies and the density of states. The Gibbs sampling output can be used to estimate expected free energy differences and their uncertainties. The probabilistic formulation offers a unifying framework for existing methods such as the weighted histogram analysis method and the multistate Bennett acceptance ratio; both are shown to be approximate versions of the full probabilistic treatment.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Influence Maximization in Continuous Time Diffusion Networks

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning, pages: 313-320, (Editors: J, Langford and J, Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Submodular Inference of Diffusion Networks from Multiple Trees

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning , pages: 489-496, (Editors: J Langford, and J Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Web [BibTex]

Web [BibTex]


Quasi-Newton Methods: A New Direction
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Abstract
Four decades after their invention, quasi- Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Image denoising: Can plain Neural Networks compete with BM3D?

Burger, H., Schuler, C., Harmeling, S.

In pages: 2392 - 2399, 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2012 (inproceedings)

Abstract
Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with a plain multi layer perceptron (MLP) applied to image patches. While this has been done before, we will show that by training on large image databases we are able to compete with the current state-of-the-art image denoising methods. Furthermore, our approach is easily adapted to less extensively studied types of noise (by merely exchanging the training data), for which we achieve excellent results as well.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
PAC-Bayesian Inequalities for Martingales

Seldin, Y., Laviolette, F., Cesa-Bianchi, N., Shawe-Taylor, J., Auer, P.

IEEE Transactions on Information Theory, 58(12):7086-7093, June 2012 (article)

Abstract
We present a set of high-probability inequalities that control the concentration of weighted averages of multiple (possibly uncountably many) simultaneously evolving and interdependent martingales. We also present a comparison inequality that bounds expectation of a convex function of martingale difference type variables by expectation of the same function of independent Bernoulli variables. This inequality is applied to derive a tighter analog of Hoeffding-Azuma inequality.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Climate classifications: the value of unsupervised clustering

Zscheischler, J., Mahecha, M., Harmeling, S.

In Proceedings of the International Conference on Computational Science , 9, pages: 897-906, Procedia Computer Science, (Editors: H. Ali, Y. Shi, D. Khazanchi, M. Lees, G.D. van Albada, J. Dongarra, P.M.A. Sloot, J. Dongarra), Elsevier, Amsterdam, Netherlands, ICCS, June 2012 (inproceedings)

Abstract
Classifying the land surface according to di erent climate zones is often a prerequisite for global diagnostic or predictive modelling studies. Classical classifications such as the prominent K¨oppen–Geiger (KG) approach rely on heuristic decision rules. Although these heuristics may transport some process understanding, such a discretization may appear “arbitrary” from a data oriented perspective. In this contribution we compare the precision of a KG classification to an unsupervised classification (k-means clustering). Generally speaking, we revisit the problem of “climate classification” by investigating the inherent patterns in multiple data streams in a purely data driven way. One question is whether we can reproduce the KG boundaries by exploring di erent combinations of climate and remotely sensed vegetation variables. In this context we also investigate whether climate and vegetation variables build similar clusters. In terms of statistical performances, k-means clearly outperforms classical climate classifications. However, a subsequent stability analysis only reveals a meaningful number of clusters if both climate and vegetation data are considered in the analysis. This is a setback for the hope to explain vegetation by means of climate alone. Clearly, classification schemes like K¨oppen-Geiger will play an important role in the future. However, future developments in this area need to be assessed based on data driven approaches.

Web DOI [BibTex]

Web DOI [BibTex]


Entropy Search for Information-Efficient Global Optimization
Entropy Search for Information-Efficient Global Optimization

Hennig, P., Schuler, C.

Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)

Abstract
Contemporary global optimization algorithms are based on local measures of utility, rather than a probability measure over location and value of the optimum. They thus attempt to collect low function values, not to learn about the optimum. The reason for the absence of probabilistic global optimizers is that the corresponding inference problem is intractable in several ways. This paper develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm which addresses each of the computational intractabilities with a sequence of approximations and explicitly adresses the decision problem of maximizing information gain from each evaluation.

PDF Web Project Page [BibTex]

PDF Web Project Page [BibTex]


no image
A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP

Nere, A., Olcese, U., Balduzzi, D., Tononi, G.

PLoS ONE, 7(5):17, May 2012 (article)

Abstract
In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips.

PDF Web DOI [BibTex]


no image
Simultaneous small animal PET/MR in activated and resting state reveals multiple brain networks

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Online Kernel-based Learning for Task-Space Tracking Robot Control

Nguyen-Tuong, D., Peters, J.

IEEE Transactions on Neural Networks and Learning Systems, 23(9):1417-1425, May 2012 (article)

Abstract
Abstract—Task-space control of redundant robot systems based on analytical models is known to be susceptive to modeling errors. Here, data driven model learning methods may present an interesting alternative approach. However, learning models for task-space tracking control from sampled data is an illposed problem. In particular, the same input data point can yield many different output values, which can form a non-convex solution space. Because the problem is ill-posed, models cannot be learned from such data using common regression methods. While learning of task-space control mappings is globally illposed, it has been shown in recent work that it is locally a well-defined problem. In this paper, we use this insight to formulate a local, kernel-based learning approach for online model learning for task-space tracking control. We propose a parametrization for the local model which makes an application in task-space tracking control of redundant robots possible. The model parametrization further allows us to apply the kerneltrick and, therefore, enables a formulation within the kernel learning framework. For evaluations, we show the ability of the method for online model learning for task-space tracking control of redundant robots.

PDF DOI [BibTex]

PDF DOI [BibTex]